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Abstract

In this result, we define (ψ, ϕ) -generalized weakly contraction map in Sb-
metric space. In the year 2017, B.K.Leta and G.V.R.Babu[3] defined (α,ψ, ϕ)-
generalized weakly contractive maps in S-metric spaces and established the
existence and uniqueness of fixed point theorem for such maps. By the motivation
of B.K.Leta and G.V.R.Babu[3] results in S-metric spaces, we introduced the
(ψ, ϕ) - generalized weakly contractive map in Sb-metric spaces and prove a
existence and uniqueness of fixed point theorem. We also give an example to
support of our result.

Keywords: Fixed point, S-metric space, Sb-metric space, (ψ, ϕ)- generalized weakly
contracition map.
2010 MSC: 47H10, 54E50

1. INTRODUCTION

During 1922, Stefan Banach conceived the concept of contraction and established
well known Banach contraction theorem. Banach Principle of contraction[9] on
metric spaces is the paramount importance cause in the field of fixed points and non
linear analysis. Literature’s are brought out new outcomes that are related to prove
the generalization of metric space and to acquire a refinement about the contractive

*Corresponding author: venkat409151@gmail.com
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condition. In the year 2006, B Sims and Mustafa[10], established theory on G-metric
spaces, that is an extension of metric spaces and established some properties. Later,
A.Aliouche, S.Sedghi and N.Shobe [7] initiated S-metric spaces, it is a generalization of
G-metric spaces in the year 2012. In 2014, S.Radojevic, N.V.Dung and N.T.Hieu [11]
proved by examples shows S-metric spaces are not a generalization of G-metric and
controvisely. Recently, N.Mlaiki and N.Souayah[8] introduced the Sb-metric spaces
as the generalization of b-metric spaces and S-metric spaces and proved some fixed
point results were proved for such spaces in [8]. Very recently Ozur and Tas[5] studied
some relations between Sb-metric spaces and some other metric spaces. Fixed points of
contractive maps on S-metric spaces were studied in [2,3,7,11-15] and some fixed point
results in Sb-metric space were also studied by different authors in [5,6,8].

In the year 2017, B.K.Leta and G.V.R.Babu[3] defined (α, ψ, ϕ)- generalized weakly
contractive maps in S-metric spaces and established the existence and uniqueness of
fixed point theorem for such maps. By the motivation of B.K.Leta and G.V.R.Babu[3]
results in S-metric spaces, we introduced the (ψ, ϕ) - generalized weakly contractive
map in Sb-metric spaces and prove a existence and uniqueness of fixed point theorem.
Let us see some basic definitions, Examples and Lemmas for the sake of transparency.

2. PRELIMINARIES

Definition 2.1.[7] Let X ̸= ∅, then a mapping S:X3 → [0,∞) is said to be an S-metric
on X if:
(S1) S(ξ, ϑ, w) > 0 for all ξ, ϑ, w ∈ X with ξ ̸= ϑ ̸= w.
(S2) S(ξ, ϑ, w) = 0 if ξ = ϑ = w.
(S3) S(ξ, ϑ, w) ≤ [S(ξ, ξ, a) + S(ϑ, ϑ, a) + S(w,w, a)]

for any ξ, ϑ, w, a ∈ X . Then we call (X,S) is an S-metric space.
Example 2.1.[13] Suppose X=R, Collection of all real numbers and let S(ξ, ϑ, w) =

|ϑ+ w − 2ξ|+ |ϑ− w| for all ξ, ϑ, w ∈ X . Then (X ,S) becomes a S-metric space.
Definition 2.2.[5] Let X ̸= ∅ and s≥1. Then we say that a function
d : X2 → [0,∞) is a b-metric on X if
(i) d(ξ, ϑ) = 0 ⇐⇒ ξ = ϑ.

(ii) d(ξ, ϑ) = d(ϑ, ξ) for all ξ, ϑ ∈ X .
(iii) d(ξ, ϑ) ≤ s[d(ξ, w) + d(w, ϑ)], for all ξ, ϑ, w ∈ X .
The pair (X ,d) is known as b-metric space with s≥1.
Definition 2.3.[1] Let X ̸= ∅ and s≥1. Then we say a mapping Sb : X

3 → [0,∞) is
Sb-metric on X if :
(i) Sb(ξ, ϑ, w) = 0 if ξ = ϑ = w.
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(ii)Sb(ξ, ϑ, w) ≤ s[Sb(ξ, ξ, a) + Sb(ϑ, ϑ, a) + Sb(w,w, a)]

∀ξ, ϑ, w, a ∈ X . The pair (X,Sb) is known as Sb-metric space.
Each S-metric space is a Sb-metric space for s=1, but the converse statement is not true.
We find an example of Sb-metric, but not an S-metric on X in [5].
Definition 2.4.[1] Consider (X,Sb) be a Sb-metric space for s>1. Then Sb-metric is
known as symmetric if Sb(ξ, ξ, ϑ) = Sb(ϑ, ϑ, ξ), ∀ξ, ϑ ∈ X .
Lemma 2.1.[4] In Sb-metric space, we have
(i) Sb(ξ, ξ, ϑ) ≤ sSb(ϑ, ϑ, ξ) and Sb(ϑ, ϑ, ξ) ≤ sSb(ξ, ξ, ϑ)

(ii) Sb(ξ, ξ, w) ≤ 2sSb(ξ, ξ, ϑ) + s2Sb(ϑ, ϑ, w).
Definition 2.5.[4] If (X,Sb) is an Sb-metric space and a sequence {ξn} in X . Then
(i) {ξn} is called a Sb-Cauchy sequence, if to every ϵ > 0, ∃ n0 ∈ N so that
Sb(ξn, ξn, ξm) ≤ ϵ, ∀n,m > n0.
(ii) {ξn} → ξ ⇐⇒ to each ϵ > 0, ∃ n0 ∈ N such that Sb(ξn, ξn, ξ) < ϵ and
Sb(ξ, ξ, ξn) < ϵ ∀n ≥ n0, and we write as limn→∞ ξn = ξ.
Definition 2.6.[4] We say that (X,Sb) is complete if each Sb-Cauchy sequence is Sb-
Convergent in X .
Tas and Ozgur[5] proved the following theorems in Sb-metric spaces.
Theorem 2.1.[5] Consider (X,Sb) be a complete Sb-metric space and s ≥ 1. If h is a
self map on X satisfying

Sb(hξ, hξ, hϑ) ≤ c Sb(ξ, ξ, ϑ) ∀ξ, ϑ ∈ X, where 0 < c < 1
s2
.

Then h has a unique fixed point ξ in X .
In this article we indicate:
(i)Ψ = {ψ : [0,∞) → [0,∞) : ψ is non decreasing, continuous and ψ(t)=0 ⇐⇒ t=0.}
(ii) Φ = {ϕ : [0,∞) → [0,∞): ϕ is continuous, ϕ(t) = 0 ⇐⇒ t = 0}.

In the year 2017, B.K.Leta and G.V.R.Babu[3] defined (α, ψ, ϕ)- generalized weakly
contractive maps in S-metric spaces and proved existence and uniqueness of fixed point
theorem for such maps as follows.
Definition 2.7[3] Consider (X ,S) be an S-metric space and h be a self map on X .
Suppose that ∃ α ∈ (0, 1), ψ ∈ Ψ and ϕ ∈ Φ so that
ψ(S(hξ, hϑ, hw)) ≤ ψ(Pα(ξ, ϑ, w))− ϕ(Pα(ξ, ϑ, w)) (2.1)

where Pα(ξ, ϑ, w) = max{S(ξ, ϑ, w), S(ξ, ξ, hξ), S(ϑ, ϑ, hϑ), S(w,w, hw),
αS(hξ, hξ, ϑ) + (1− α)S(hϑ, hϑ, w)}, ∀ξ, ϑ, w ∈ X .
Then h is called a (α, ψ, ϕ)- generalized weakly contractive map on X .
Theorem 2.2.[3] Let h be a self map on a complete S-metric space (X ,S) and h satisfies
(α, ψ, ϕ)- generalized weakly contractive map. Then h have a unique fixed point in X .
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Lemma 2.2.[6] Let {ξn} is Sb-convergent to ξ in Sb-metric space (X,Sb) for s≥1, then
we obtain:
(i) 1

2s
Sb(ϑ, ϑ, ξ) ≤ lim infn→∞ Sb(ϑ, ϑ, ξn) ≤ lim supn→∞ Sb(ϑ, ϑ, ξn) ≤ 2sSb(ϑ, ϑ, ξ)

and
(ii) 1

s2
Sb(ξ, ξ, ϑ) ≤ liminfn→∞Sb(ξn, ξn, ϑ) ≤ lim supn→∞ Sb(ξn, ξn, ϑ) ≤

s2Sb(ξ, ξ, ϑ).

Lemma 2.3.[2] Let {ξn} be a sequence in Sb-metric space (X ,Sb) so that
limn→∞ Sb(ξn, ξn, ξn+1) = 0.
If sequence {ξn} is not Cauchy, then we find an ϵ > 0 and {mk} and {nk} are
sequences of natural numbers with nk > mk > k so that Sb(ξmk

, ξmk
, ξnk

) ≥ ϵ,
Sb(ξmk−1, ξmk−1, ξnk

) < ϵ and
(i) limk→∞ Sb(ξmk

, ξmk
, ξnk

) = ϵ. (ii) limk→∞ Sb(ξmk−1, ξmk−1, ξnk
) = ϵ.

(iii) limk→∞ Sb(ξmk
, ξmk

, ξnk−1) = ϵ. (ii) limk→∞ Sb(ξmk−1, ξmk−1, ξnk−1) = ϵ.

In this article, we define (α, ψ, ϕ)-almost generalized weakly contractive maps in Sb-
metric spaces and establish the existence and uniqueness of fixed point of maps. Also,
we draw some corollaries and provide an example in support of our results.

3. MAIN RESULTS

Definition 3.1. Let (X,Sb) be an Sb-metric space for s≥1. Let h be a self map of X .
Then we say h be a (ψ, ϕ)-generalized weakly contractive map if ∃ L≥0, ψ ∈ Ψ and
ϕ ∈ Φ such that
ψ(4s4Sb(hξ, hϑ, hw)) ≤ ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)) + L.Q(ξ, ϑ, w) (3.1.)

where P(ξ, ϑ, w) = max{Sb(ξ, ϑ, w), Sb(ξ, ξ, hξ), Sb(ϑ, ϑ, hϑ), Sb(w,w, hw),
1

4s2
[Sb(hξ, hϑ, hw) + Sb(hξ, hξ, ξ)Sb(hξ, hξ, w)Sb(hw, hw, ϑ)]}

and Q(ξ, ϑ, w) = min{Sb(hw, ξ, ξ), Sb(hξ, ϑ, ϑ), Sb(hξ, w,w), Sb(hξ, ϑ, w)}
∀ξ, ϑ, w ∈ X .
Example 3.1. Consider (X,Sb) be a complete Sb-metric space for s=4, where X =

[0, 7
3
] and Sb : X

3 → R is defined by
Sb(ξ, ϑ, w) =

1
16
[|ξ − ϑ|+ |ϑ− w|+ |w − ξ|]2, ∀ξ, ϑ, w ∈ X .

We define a self map h on X by

hξ =

1
8

if ξ ∈ [0, 2]
ξ
16

− 1
32

if ξ ∈ (2, 7
3
]

.

Also, Consider ϕ, ψ : [0,∞) → [0,∞) be two functions defined by ψ(t) = t and
ϕ(t) = t

4
for all t∈ [0,∞).

Now, we verify the inequality (3.1.)
case(i) when ξ, ϑ, w ∈ [0,2], we have ψ(4s4Sb(hξ, hϑ, hw)) = 0.
Then inequality (3.1.) holds good.
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case(ii) Let ξ, ϑ, w ∈ (2, 7
3
]. Suppose that ξ > ϑ > w. Then

ψ(4s4Sb(hξ, hϑ, hw)) = 45.
1

16
[| ξ
16

− ϑ

16
|+ | ϑ

16
− w

16
|+ | w

16
− ξ

16
|]2

≤ 45

16
[3| ξ

16
− w

16
|]2

≤ 9

4
|ξ − w|2 = 1

4

≤ 15123

16384
=

5041

4096
− 5041

16384

=
3

4
Sb(ξ, ξ, hξ) ≤

3

4
P (ξ, ϑ, w)

= P (ξ, ϑ, w)− 1

4
P (ξ, ϑ, w)

= ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)).

case(iii) When ξ, ϑ ∈[0,2] and ∈ (2, 7
3
]. Suppose that ξ > ϑ. Then

ψ(4s4Sb(hξ, hϑ, hw)) = 45Sb(
1

8
,
1

8
,
w

16
− 1

32
)

=
45

16
[|1
8
− (

w

16
− 1

32
)|+ | w

16
− 1

32
− 1

8
|]

=
45

16
[2|1

8
− w

16
+

1

32
|]2

=
1

4
[5− 2w]2

≤ 1

4
≤ 15123

16384
=

5041

4096
− 5041

16384

= Sb(w,w, hw)−
1

4
Sb(w,w, hw)

= P (ξ, ϑ, w)− 1

4
P (ξ, ϑ, w)

= ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)).
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case(iv) When ϑ,w ∈ [0, 2] and ξ ∈ (2, 7
3
]. Suppose that ϑ > w. Then

ψ(4s4Sb(hξ, hϑ, hw)) = 45Sb(
ξ

16
− 1

32
,
1

8
,
1

8
)

=
45

16
[| ξ
16

− 1

32
− 1

8
|+ |0|+ |1

8
− (

ξ

16
− 1

32
)|]2

=
45

16
[2|1

8
− (

ξ

16
− 1

32
)|]2

= 44[
5− 2ξ

32
]2 =

1

4
[5− 2ξ]2

≤ 1

4
≤ 15123

16384
=

5041

4096
− 5041

16384

=
3

4
Sb(ξ, ξ, hξ) ≤

3

4
P (ξ, ϑ, w)

= P (ξ, ϑ, w)− 1

4
P (ξ, ϑ, w)

= ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)).

case(v) When w∈ [0, 2] and ξ, ϑ ∈ (2, 7
3
]. Suppose that ξ > ϑ. Then

ψ(4s4Sb(hξ, hϑ, hw)) = 45Sb(
ξ

16
− 1

32
,
ϑ

16
− 1

32
,
1

8
)

=
45

16
[
ξ − ϑ

16
+

2ϑ− 5

32
+

5− 2ξ

32
]2

=
45

16
[
10− 4ϑ

32
]2

≤ 1

4
[5− 2ϑ]2

≤ 1

4
≤ 15123

16384
=

5041

4096
− 5041

16384

= Sb(w,w, hw)−
1

4
Sb(w,w, hw)

= P (ξ, ϑ, w)− 1

4
P (ξ, ϑ, w)

= ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)).
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case(vi) When ξ ∈[0,2] and ϑ,w ∈ (2, 7
3
]. Suppose that ϑ > w. Then

ψ(4s4Sb(hξ, hϑ, hw)) = 45Sb(
1

8
,
ϑ

16
− 1

32
,
w

16
− 1

32
)

=
45

16
[|1
8
− (

ϑ

16
− 1

32
)|+ |ϑ− w

16
|+ | w

16
− 1

32
− 1

8
|]2

=
45

16
[
5− 2ϑ

32
+

2ϑ− 2w

32
+

5− 2w

32
]2

=
45

16
.
1

322
[2(5− 2w)]2

≤ 1

4
≤ 15123

16384
=

5041

4096
− 5041

16384

= Sb(w,w, hw)−
1

4
Sb(w,w, hw)

= P (ξ, ϑ, w)− 1

4
P (ξ, ϑ, w)

= ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)).

case(vii) When ξ, w ∈[0,2] and ϑ ∈ (2, 7
3
]. Suppose that ξ > w. Then

ψ(4s4Sb(hξ, hϑ, hw)) = 45Sb(
1

8
,
ϑ

16
− 1

32
,
1

8
)

=
45

16
[|1
8
− (

ϑ

16
− 1

32
)|+ | ϑ

16
− 1

32
− 1

8
|+ |0|]2

=
45

16
.
1

322
[2(5− 2ϑ)]2

=
1

4
[5− 2ϑ]2

≤ 1

4
≤ 15123

16384
=

5041

4096
− 5041

16384

= Sb(w,w, hw)−
1

4
Sb(w,w, hw)

= P (ξ, ϑ, w)− 1

4
P (ξ, ϑ, w)

= ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)).
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case(viii) When ξ ∈[0,2] and ϑ,w ∈ (2, 7
3
]. Suppose that ϑ > w. Then

ψ(4s4Sb(hξ, hϑ, hw)) = 45Sb(
1

8
,
y

16
− 1

32
,
w

16
− 1

32
)

=
45

16
[|1
8
− (

ϑ

16
− 1

32
)|+ |ϑ− w

16
|+ | w

16
− 1

32
− 1

8
|]2

=
45

16
.
1

322
[2(5− 2w)]2

=
1

4
[5− 2w]2

≤ 1

4
≤ 15123

16384
=

5041

4096
− 5041

16384

= Sb(w,w, hw)−
1

4
Sb(w,w, hw)

= P (ξ, ϑ, w)− 1

4
P (ξ, ϑ, w)

= ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)).

Therefore h satisfies (ψ, ϕ) - generalized weakly contractive map.
Theorem 3.1. Suppose h be a self map on a complete symmetric Sb-metric space
(X,Sb) for s≥1. If h be a (ψ, ϕ) - generalized weakly contraction map, then h has a
unique fixed point in X .
Proof.Let ξ0 ∈ X and define a sequence {ξn} in X by ξn = hξn−1, for n =1,2,3...
Suppose ξn−1 = ξn to some n, then h has a fixed point ξn−1.
Now, we suppose that ξn−1 ̸= ξn, ∀ n ∈ N.
By choosing ξ = ϑ = ξn−2, w = ξn−1 in (3.1.), we obtain
ψ(Sb(ξn−1, ξn−1, ξn)) ≤ ψ(4s4Sb(hξn−2, hξn−2, hξn−1))

≤ ψ(P (ξn−2, ξn−2, ξn−1))− ϕ(P (ξn−2, ξn−2, ξn−1)) + L.Q(ξn−2, ξn−2, ξn−1) (3.2.)

where
P (ξn−2, ξn−2, ξn−1) =
max{Sb(ξn−2, ξn−2, ξn−1), Sb(ξn−2, ξn−2, hξn−2), Sb(ξn−2, ξn−2, hξn−2),

Sb(ξn−1, ξn−1, hξn−1),
1

4s2
[Sb(hξn−2, hξn−2, hξn−1) +

Sb(hξn−2, hξn−2, ξn−2)Sb(hξn−2, hξn−2, ξn−1)Sb(hξn−1, hξn−1, ξn−2)]})
=max{Sb(ξn−2, ξn−2, ξn−1), Sb(ξn−2, ξn−2, ξn−1), Sb(ξn−2, ξn−2, ξn−1),

Sb(ξn−1, ξn−1, ξn),
1

4s2
[Sb(ξn−1, ξn−1, ξn) +

Sb(ξn−1, ξn−1, ξn−2)Sb(ξn−1, ξn−1, ξn−1)Sb(ξn, ξn, ξn−2)]})
=max{Sb(ξn−2, ξn−2, ξn−1), Sb(ξn−1, ξn−1, ξn),

1
4s2
Sb(ξn−1, ξn−1, ξn)}

= max{Sb(ξn−2, ξn−2, ξn−1), Sb(ξn−1, ξn−1, ξn)} (3.3.)

and
Q(ξn−2, ξn−2, ξn−1)= min{Sb(hξn−1, ξn−2, ξn−2), Sb(hξn−2, ξn−2, ξn−2),
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Sb(hξn−2, ξn−1, ξn−1), Sb(hξn−2, ξn−2, ξn−1)}
=min{Sb(ξn, ξn−2, ξn−2), Sb(ξn−1, ξn−2, ξn−2),

Sb(ξn−1, ξn−1, ξn−1), Sb(ξn−1, ξn−2, ξn−1)}
= 0. (3.4.)

If Sb(ξn−1, ξn−1, ξn) is the maximum in (3.3.) and using (3.4.) and (3.2.), we get
ψ(Sb(ξn−1, ξn−1, ξn)) ≤ ψ(Sb(ξn−1, ξn−1, ξn))− ϕ(Sb(ξn−1, ξn−1, ξn)).
This implies ϕ(Sb(ξn−1, ξn−1, ξn)) = 0. Therefore, ξn−1 = ξn, is a contradiction to our
assumption. Thus,
ψ(Sb(ξn−1, ξn−1, ξn)) ≤
ψ(Sb(ξn−2, ξn−2, ξn−1))− ϕ(Sb(ξn−2, ξn−2, ξn−1)). (3.5.)

< ψ(Sb(ξn−2, ξn−2, ξn−1)).
By the definition of ψ, we have
Sb(ξn−1, ξn−1, ξn) < Sb(ξn−2, ξn−2, ξn−1).
Thus, {Sb(ξn−1, ξn−1, ξn)} be a positive real of strictly decreasing sequence.
Then we find a r≥0 so that limn→∞ Sb(ξn−1, ξn−1, ξn) = r.
Taking n→ ∞ in (3.5.), we obtain
ψ(r) ≤ ψ(r)− ϕ(r). This implies ϕ(r) = 0. Hence r = 0. Thus,
limn→∞ Sb(ξn−1, ξn−1, ξn) = 0. (3.6.)

By choosing ξ = ϑ = ξn−1, w = ξn−2 in (3.1.), we get
ψ(Sb(ξn, ξn, ξn−1)) ≤ ψ(4s4Sb(hξn−1, hξn−1, hξn−2))

≤ ψ(P (ξn−1, ξn−1, ξn−2))− ϕ(P (ξn−1, ξn−1, ξn−2)) + L.Q(ξn−1, ξn−1, ξn−2) (3.7.)
where
P (ξn−1, ξn−1, ξn−2)

= max {Sb(ξn−1, ξn−1, ξn−2), Sb(ξn−1, ξn−1, hξn−1), Sb(ξn−1, ξn−1, hξn−1),

Sb(ξn−2, ξn−2, hξn−2),
1

4s2
[Sb(hξn−1, hξn−1, hξn−2) +

Sb(hξn−1, hξn−1, ξn−1)Sb(hξn−1, hξn−1, ξn−2)Sb(hξn−2, hξn−2, ξn−1)]}
=max{Sb(ξn−1, ξn−1, ξn−2), Sb(ξn−1, ξn−1, ξn), Sb(ξn−1, ξn−1, ξn),

Sb(ξn−2, ξn−2, ξn−1),
1

4s2
[Sb(ξn, ξn, ξn−1) +

Sb(ξn, ξn, ξn−1)Sb(ξn, ξn, ξn−2)Sb(ξn−1, ξn−1, ξn−1)]}
=max{Sb(ξn−1, ξn−1, ξn−2), Sb(ξn, ξn, ξn−1),

1
4s2
Sb(ξn, ξn, ξn−1)}

= max{Sb(ξn−1, ξn−1, ξn−2), Sb(ξn, ξn, ξn−1)} (3.8.)
and
Q(ξn−1, ξn−1, ξn−2) = min{Sb(hξn−2, ξn−1, ξn−1), Sb(hξn−1, ξn−1, ξn−1),

Sb(hξn−1, ξn−2, ξn−2), Sb(hξn−1, ξn−1, ξn−2)}
= min{Sb(ξn−1, ξn−1, ξn−1), Sb(ξn, ξn−1, ξn−1),

Sb(ξn, ξn−2, ξn−2), Sb(ξn, ξn−1, ξn−2)}
= 0. (3.9.)

If Sb(ξn, ξn, ξn−1) is maximum in (3.8.) and using (3.7.) and (3.9.), we get
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ψ(Sb(ξn, ξn, ξn−1)) ≤ ψ(Sb(ξn, ξn, ξn−1))− ϕ(Sb(ξn, ξn, ξn−1))+L.0
This implies ϕ(Sb(ξn, ξn, ξn−1)) = 0. Hence, ξn = ξn−1, is a contradiction to our as-
sumption.
Thus
ψ(Sb(ξn, ξn, ξn−1)) ≤ ψ(Sb(ξn−1, ξn−1, ξn−2))− ϕ(Sb(ξn−1, ξn−1, ξn−2)) (3.10.)

≤ ψ(Sb(ξn−1, ξn−1, ξn−2))

From the definition of ψ, we obtain
Sb(ξn, ξn, ξn−1) < Sb(ξn−1, ξn−1, ξn−2).
Thus, {Sb(ξn, ξn, ξn−1)} be a positive reals of strictly decreasing sequence.
Hence, we can find r ≥ 0 so that
limn→∞ Sb(ξn, ξn, ξn−1) = r.
Taking n→∞ in (3.10.), we obtain
ψ(r) ≤ ψ(r)− ϕ(r). This implies ϕ(r) = 0. Therefore r = 0. Thus,
limn→∞ Sb(ξn, ξn, ξn−1) = 0.
Now we verify that {ξn} is a Sb-cauchy sequence in X .
Suppose that sequence {ξn} is not a Sb- cauchy, ∃ ϵ > 0 and monotone increas-
ing sequence of real numbers m(κ) and n(κ) with n(κ) > m(κ) > κ so that
Sb(ξm(κ)−1, ξm(κ)−1, ξn(κ)−1) ≥ ϵ and Sb(ξm(κ)−1, ξm(κ)−1, ξn(κ)−2) < ϵ. (3.11.)
Now from (3.1.),(3.7) and (3.11.), we have
ψ(4s4ϵ) ≤ ψ(4s4Sb(ξm(κ)−1, ξm(κ)−1, ξn(κ)−1)) =

ψ(4s4Sb(hξm(κ)−2, hξm(κ)−2, hξn(κ)−2))

≤ ψ(P (ξm(κ)−2, ξm(κ)−2, ξn(κ)−2))− ϕ(P (ξm(κ)−2, ξm(κ)−2, ξn(κ)−2))

+ L.Q(ξm(κ)−2, ξm(κ)−2, ξn(κ)−2)

where
P (ξm(κ)−2, ξm(κ)−2, ξn(κ)−2)

= max{Sb(ξm(κ)−2, ξm(κ)−2, ξn(κ)−2), Sb(ξm(κ)−2, ξm(κ)−2, hξm(κ)−2),

Sb(ξm(κ)−2, ξm(κ)−2, hξm(κ)−2), Sb(ξn(κ)−2, ξn(κ)−2, hξn(κ)−2),
1

4s2
[Sb(hξm(κ)−2, hξm(κ)−2, hξn(κ)−2)

+ Sb(hξm(κ)−2, hξm(κ)−2, ξm(κ)−2)Sb(hξm(κ)−2, hξm(κ)−2,

ξn(κ)−2)Sb(hξn(κ)−2, hξn(κ)−2, ξm(κ)−2)]})
=max{Sb(ξm(κ)−2, ξm(κ)−2, ξn(κ)−2), Sb(ξm(κ)−2, ξm(κ)−2, ξm(κ)−1),

Sb(ξm(κ)−2, ξm(κ)−2, ξm(κ)−1), Sb(ξn(κ)−2, ξn(κ)−2, ξn(κ)−1),
1

4s2
[Sb(ξm(κ)−1, ξm(κ)−1, ξn(κ)−1)

+ Sb(ξm(κ)−1, ξm(κ)−1, ξm(κ)−2)Sb(ξm(κ)−1,

ξm(κ)−1, ξn(κ)−2)Sb(ξn(κ)−1, ξn(κ)−1, ξm(κ)−2)]})
As κ→ ∞
limn→∞A(ξm(κ)−2, ξm(κ)−2, ξn(κ)−2) = max{Sb(ξm(κ)−2, ξm(κ)−2, ξn(κ)−2),
1

4s2
Sb(ξm(κ)−1, ξm(κ)−1, ξn(κ)−1)}.
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and
Q(ξm(κ)−2, ξm(κ)−2, ξn(κ)−2) =
min{Sb(hξn(κ)−2, ξm(κ)−2, ξm(κ)−2), Sb(hξm(κ)−2, ξm(κ)−2, ξm(κ)−2),

Sb(hξm(κ)−2, ξn(κ)−2, ξn(κ)−2), Sb(hξm(κ)−2, ξm(κ)−2, ξn(κ)−2)}.
= 0.

If 1
4s2
Sb(ξm(κ)−1, ξm(κ)−1, ξn(κ)−1) is maximum,

ψ(4s4Sb(ξm(κ)−1, ξm(κ)−1, ξn(κ)−1)) ≤
ψ( 1

4s2
Sb(ξm(κ)−1, ξm(κ)−1, ξn(κ)−1))− ϕ( 1

4s2
Sb(ξm(κ)−1, ξm(κ)−1, ξn(κ)−1))

This implies
ψ(4s4Sb(ξm(κ)−1, ξm(κ)−1, ξn(κ)−1)) < ψ( 1

4s2
Sb(ξm(κ)−1, ξm(κ)−1, ξn(κ)−1))

From the property of ψ, we have
4s4Sb(ξm(κ)−1, ξm(κ)−1, ξn(κ)−1) <

1
4s2
Sb(ξm(κ)−1, ξm(κ)−1, ξn(κ)−1)

This gives rise to
4s4 < 1

4s2
⇒ 16s6 < 1, a contradiction as s ≥ 1.

Therefore, we have
ψ(4s4Sb(ξm(κ)−1, ξm(κ)−1, ξn(κ)−1)) ≤
ψ(Sb(ξm(κ)−2, ξm(κ)−2, ξn(κ)−2))− ϕ(Sb(ξm(κ)−2, ξm(κ)−2, ξn(κ)−2))

< ψ(Sb(ξm(κ)−2, ξm(κ)−2, ξn(κ)−2))

Now using lemma(2.1), we have
4s4Sb(ξm(κ)−1, ξm(κ)−1, ξn(κ)−1) ≤
2sSb(ξm(κ)−2, ξm(κ)−2, ξm(κ)−1) + s2Sb(ξm(κ)−1, ξm(κ)−1, ξn(κ)−2).

Letting κ→ ∞, we get
4s4ϵ ≤ s2ϵ, a contradiction as s≥1.
Hence {ξn} be a Sb-Cauchy sequence of complete space X , ∃τ ∈ X so that
limn→∞ ξn = τ.

Now we show that hτ = τ . Suppose that hτ ̸= τ . Then by lemma (2.2.), we have
1
2s
Sb(fτ, fτ, τ) ≤ lim infn→∞ Sb(hτ, hτ, hξn)

This implies
4s4

2s
Sb(fτ, fτ, τ) ≤ 4s4 lim infn→∞ Sb(hτ, hτ, hξn)

≤ 4s4 lim supn→∞ Sb(hτ, hτ, hξn)

Thus
2s3Sb(hτ, hτ, τ) ≤ 4s4 lim infn→∞ Sb(hτ, hτ, hξn)

≤ 4s4 lim supn→∞ Sb(hτ, hτ, hξn)

From the property of ψ, we have
ψ(2s3Sb(hτ, hτ, τ)) ≤ ψ(4s4 lim supn→∞ Sb(hτ, hτ, hξn))

≤
ψ(lim supn→∞ P (τ, τ, ξn))− ϕ(lim supn→∞ P (τ, τ, ξn)) + L(lim supn→∞Q(τ, τ, ξn))

Now
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P (τ, τ, ξn) = max{Sb(τ, τ, ξn), Sb(τ, τ, hτ), Sb(τ, τ, hτ), Sb(ξn, ξn, hξn),
1

4s2
[Sb(hτ, hτ, hξn) + Sb(hτ, hτ, τ)Sb(hτ, hτ, ξn)Sb(hξn, hξn, τ)]}

= max {Sb(τ, τ, hτ),
1

4s2
Sb(hτ, hτ, τ)}

Q(τ, τ, ξn) = min{Sb(hξn, τ, τ), Sb(hτ, τ, τ), Sb(hτ, ξn, ξn), Sb(hτ, τ, ξn)}
= 0

If 1
4s2
Sb(hτ, hτ, τ) is maximum

ψ(2s3Sb(hτ, hτ, τ)) ≤ ψ( 1
4s2
Sb(hτ, hτ, τ))− ϕ( 1

4s2
Sb(hτ, hτ, τ)) + L.0

< ψ( 1
4s2
Sb(hτ, hτ, τ))

From the property of ψ, we have
2s3Sb(hτ, hτ, τ) <

1
4s2
Sb(hτ, hτ, τ)

this implies
8s5 < 1, a contradiction. Therefore
ψ(2s3Sb(hτ, hτ, τ)) ≤ ψ(Sb(τ, τ, hτ))− ϕ(Sb(τ, τ, hτ)) + L.0

⇒ ψ(2s3Sb(hτ, hτ, τ)) < ψ(Sb(τ, τ, hτ)). (3.12.)
If τ ̸= hτ , in (3.12.), we have
2s3Sb(hτ, hτ, τ) < Sb(τ, τ, hτ) ≤ sSb(hτ, hτ, τ)

which implies
2s2 < 1, is a contradiction. Therefore, hτ = τ .
Now, we show that τ is unique.
Let τ and j be two distinct fixed points of h.
Now, consider
ψ(Sb(τ, τ, j)) = ψ(Sb(hτ, hτ, hj))

≤ ψ(4s4Sb(hτ, hτ, hj)) (3.13.)
≤ ψ(P (τ, j, j))− ϕ(P (τ, j, j)) + L.Q(τ, j, j)

where
P (τ, j, j) = max{Sb(τ, j, j), Sb(τ, τ, hτ), Sb(j, j, hj), Sb(j, j, hj),

1
4s4

[Sb(hτ, hj, hj) + Sb(hτ, hτ, τ)Sb(hτ, hτ, j)Sb(hj, hj, j)]}
= {Sb(τ, j, j),

1
4s
Sb(τ, j, j)} = Sb(τ, j, j) (3.14.)

and Q(τ, j, j) = min{Sb(fj, τ, τ), Sb(fτ, j, j), Sb(fτ, fτ, j), Sb(fj, fj, j)}
= 0 (3.15.)
From (3.13.),(3.14.) and (3.15.) we get
ψ( 1

4s4
Sb(τ, j, j)) ≤ ψ(Sb(τ, j, j))− ϕ(Sb(τ, j, j)) + L.0

< ψ(Sb(τ, j, j)).

From the property of ψ, we have 4s4 < 1, a contradiction.
There fore, we get Sb(τ, j, j) = 0

Hence τ=j. Hence τ is the unique fixed point of h.

In the Theorem (3.1.), if we substitue L=0, we get the following.
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Corollary 3.1. Let h be a self map of X and here X is an Sb-metric space. Suppose ∃
ϕ ∈ Φ and ψ ∈ Ψ so that ψ(4s4Sb(hξ, hϑ, hw)) ≤ ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w))

where P (ξ, ϑ, w) = max{Sb(ξ, ϑ, w), Sb(ξ, ξ, hξ), Sb(ϑ, ϑ, hϑ), Sb(w,w, hw),
1

4s2
[Sb(hξ, hϑ, hw) + Sb(hξ, hξ, ξ)Sb(hξ, hξ, w)Sb(hw, hw, ϑ)]}.

∀ξ, ϑ, w ∈ X . Then h contains unique fixed point in X .

If ψ is the identity map in the Corollary (3.1.), we get a Corollary as follows.
Corollary 3.2. Let h be a self map of X and here X is an Sb-metric space. Suppose
there exists ϕ ∈ Φ so that 4s4Sb(hξ, hϑ, hw) ≤ P (ξ, ϑ, w)− ϕ(P (ξ, ϑ, w))

where P (ξ, ϑ, w) = max{Sb(ξ, ϑ, w), Sb(ξ, ξ, hξ), Sb(ϑ, ϑ, hϑ), Sb(w,w, hw),
1

4s2
[Sb(hξ, hϑ, hw) + Sb(hξ, hξ, ξ)Sb(hξ, hξ, w)Sb(hw, hw, ϑ)]}.

∀ ξ, ϑ, w ∈ X . Then h contains unique fixed point in X .

If we substitute P(ξ, ϑ, w) = P*(ξ, ϑ, w) in the Theorem (3.1.), we obtain the following.
Corollary 3.3. Let h be a self map of X and here X is an S-metric space. Suppose ∃
ϕ ∈ Φ and ψ ∈ Ψ so that ψ(4s4Sb(hξ, hϑ, hw)) ≤ ψ(P ∗(ξ, ϑ, w))− ϕ(P ∗(ξ, ϑ, w)) +

L.Q(ξ, ϑ, w)

where P*(ξ, ϑ, w) = max{Sb(ξ, ϑ, w), Sb(ξ, ξ, hξ), Sb(ϑ, ϑ, hϑ), Sb(w,w, hw),
Sb(ξ,ξ,hξ)Sb(ϑ,ϑ,hϑ)

1+Sb(ξ,ξ,hξ)+Sb(ξ,ϑ,w)
, Sb(ξ,ξ,hξ)Sb(w,w,hw)
1+Sb(w,w,hw)+Sb(ξ,ϑ,w)

,
1

4s2
[Sb(hξ, hϑ, hw) + Sb(hξ, hξ, ξ)Sb(hξ, hξ, w)Sb(hw, hw, ϑ)]}.

and Q(ξ, ϑ, w) = min{Sb(hw, ξ, ξ), Sb(hξ, ϑ, ϑ), Sb(hξ, w,w), Sb(hξ, ϑ, w)}
∀ξ, ϑ, w ∈ X . Then h contains unique fixed point in X .

In Theorem (3.1.), if we put s=1, we get the following.
Corollary 3.4. Let h be a self map of X and here X is an S-metric space. Suppose that
∃ L≥ 0, ϕ ∈ Φ and ψ ∈ Ψ so that
ψ(S(hξ, hϑ, hw)) ≤ ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)) + L.Q(ξ, ϑ, w)

where P (ξ, ϑ, w) = max{S(ξ, ϑ, w), S(ξ, ξ, hξ), S(ϑ, ϑ, hϑ), S(w,w, hw),
1
2
[S(hξ, hϑ, hw) + S(hξ, hξ, ξ)S(hξ, hξ, w)S(hw, hw, ϑ)]}

and Q(ξ, ϑ, w) = min{S(hw, ξ, ξ), S(hξ, ϑ, ϑ), S(hξ, w,w), S(hξ, ϑ, w)}
∀ξ, ϑ, w ∈ X . Then h contains unique fixed point in X .

Example 3.2. Consider X = [0, 12
5
] and define S : X3 → R by

Sb(ξ, ϑ, w) =
1
16
[|ξ−ϑ|+ |ϑ−w|+ |w−ξ|]2, ∀ξ, ϑ, w ∈ X . Then (X,Sb) is a complete

Sb-metric space for s=4.
We define a self map h on X by
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hξ =

1
8

if ξ ∈ [0, 2]
ξ
16

− 1
32

if ξ ∈ (2, 12
5
]

.

Also, Consider ϕ, ψ : [0,∞) → [0,∞) be two functions defined by ψ(t) = t and
ϕ(t) = t

3
, for any t ∈ [0,∞).

Now, we validate the inequality (3.1.).
case(i) when ξ, ϑ, w ∈ [0,2], we have ψ(4s4Sb(hξ, hϑ, hw)) = 0.
Then inequality (3.1.) holds good.
case(ii) Let ξ, ϑ, w ∈ (2, 7

3
]. Suppose that ξ > ϑ > w. Then

ψ(4s4Sb(hξ, hϑ, hw)) = 45.
1

16
[| ξ
16

− ϑ

16
|+ | ϑ

16
− w

16
|+ | w

16
− ξ

16
|]2

≤ 45

16
[3| ξ

16
− w

16
|]2

≤ 9

4
|ξ − w|2 = 9

25

≤ 10558

12288
=

5329

4096
− 5329

12288

= Sb(ξ, ξ, hξ)−
1

3
Sb(ξ, ξ, hξ)

= P (ξ, ϑ, w)− 1

3
P (ξ, ϑ, w)

= ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)).

case(iii) When ξ, ϑ ∈[0,2] and w∈ (2, 12
5
]. Suppose that ξ > ϑ. Then

ψ(4s4Sb(hξ, hϑ, hw)) = 45Sb(
1

8
,
1

8
,
w

16
− 1

32
)

=
45

16
[|1
8
− (

w

16
− 1

32
)|+ | w

16
− 1

32
− 1

8
|]2

=
45

16
[2|1

8
− w

16
+

1

32
|]2

=
1

4
[5− 2w]2

≤ 1

4
≤ 10558

12288
=

5329

4096
− 5329

12288

= Sb(w,w, hw)−
1

3
Sb(w,w, hw)

= P (ξ, ϑ, w)− 1

3
P (ξ, ϑ, w)

= ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)).
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case(iv) When ϑ,w ∈ [0, 2] and ξ ∈ (2, 12
5
]. Suppose that ϑ > w. Then

ψ(4s4Sb(hξ, hϑ, hw)) = 45Sb(
ξ

16
− 1

32
,
1

8
,
1

8
)

=
45

16
[| ξ
16

− 1

32
− 1

8
|+ |0|+ |1

8
− (

ξ

16
− 1

32
)|]2

=
45

16
[2|1

8
− (

ξ

16
− 1

32
)|]2

= 44[
5− 2ξ

32
]2 =

1

4
[5− 2ξ]2

≤ 1

4
≤ 10558

12288
=

5329

4096
− 5329

12288

=
2

3
Sb(ξ, ξ, hξ) ≤

2

3
P (ξ, ϑ, w)

= P (ξ, ϑ, w)− 1

3
P (ξ, ϑ, w)

= ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)).

case(v) When w∈ [0, 2] and ξ, ϑ ∈ (2, 12
5
]. Suppose that ξ > ϑ. Then

ψ(4s4Sb(hξ, hϑ, hw)) = 45Sb(
ξ

16
− 1

32
,
ϑ

16
− 1

32
,
1

8
)

=
45

16
[
ξ − ϑ

16
+

2ϑ− 5

32
+

5− 2ξ

32
]2

=
45

16
[
10− 4ϑ

32
]2

≤ 1

4
[5− 2ϑ]2

≤ 1

4
≤ 10558

12288
=

5329

4096
− 5329

12288

= Sb(w,w, hw)−
1

3
Sb(w,w, hw)

= P (ξ, ϑ, w)− 1

3
P (ξ, ϑ, w)

= ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)).
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case(vi) When ξ ∈[0,2] and ϑ,w ∈ (2, 12
5
]. Suppose that ϑ > w. Then

ψ(4s4Sb(hξ, hϑ, hw)) = 45Sb(
1

8
,
ϑ

16
− 1

32
,
w

16
− 1

32
)

=
45

16
[|1
8
− (

ϑ

16
− 1

32
)|+ |ϑ− w

16
|+ | w

16
− 1

32
− 1

8
|]2

=
45

16
[
5− 2ϑ

32
+

2ϑ− 2w

32
+

5− 2w

32
]2

=
45

16
.
1

322
[2(5− 2w)]2

≤ 1

4
≤ 10558

12288
=

5329

4096
− 5329

12288

= Sb(w,w, hw)−
1

3
Sb(w,w, hw)

= P (ξ, ϑ, w)− 1

3
P (ξ, ϑ, w)

= ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)).

case(vii) When ξ, w ∈[0,2] and ϑ ∈ (2, 12
5
]. Suppose that ξ > w. Then

ψ(4s4Sb(hξ, hϑ, hw)) = 45Sb(
1

8
,
ϑ

16
− 1

32
,
1

8
)

=
45

16
[|1
8
− (

ϑ

16
− 1

32
)|+ | ϑ

16
− 1

32
− 1

8
|+ |0|]2

=
45

16
.
1

322
[2(5− 2ϑ)]2

=
1

4
[5− 2ϑ]2

≤ 1

4
≤ 10558

12288
=

5329

4096
− 5329

12288

= Sb(w,w, hw)−
1

3
Sb(w,w, hw)

= P (ξ, ϑ, w)− 1

3
P (ξ, ϑ, w)

= ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)).
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case(viii) When ξ ∈[0,2] and ϑ,w ∈ (2, 12
5
]. Suppose that ϑ > w. Then

ψ(4s4Sb(hξ, hϑ, hw)) = 45Sb(
1

8
,
y

16
− 1

32
,
w

16
− 1

32
)

=
45

16
[|1
8
− (

ϑ

16
− 1

32
)|+ |ϑ− w

16
|+ | w

16
− 1

32
− 1

8
|]2

=
45

16
.
1

322
[2(5− 2w)]2

=
1

4
[5− 2w]2

≤ 1

4
≤ 10558

12288
=

5329

4096
− 5329

12288

= Sb(w,w, hw)−
1

3
Sb(w,w, hw)

= P (ξ, ϑ, w)− 1

3
P (ξ, ϑ, w)

= ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)).

Hence the conditions of Theorem (3.1.) are satisfied by h and also 1
8

is the unique fixed
point of h.
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Abstract. Through this article, we establish an invariant point theorem by defining generalized Zs -

contractions in relation to the simulation function in S-metric space. In this article, we generalized

the results of Nihal Tas, Nihal Yilmaz Ozgur and N.Mlaiki. In addition to that, we bestow an example

which supports our results.

1. Introduction

Fixed point is also known as an invariant point. Banach principle of contraction [2] on metric space

plays very important role in the field of invariant point theory and non linear analysis. In 1922, Stefan

Banach initiated the concept of contraction and established well known Banach contraction theorem.

In the year 2006, B Sims and Mustafa [9], established theory on G-metric spaces, that is an extension of

metric spaces and established some properties. Later, A.Aliouche, S.Sedghi and N.Shobe [13] initiated

S-metric spaces, it is a generalization of G-metric spaces in the year 2012. In 2014, S.Radojevic,

N.V.Dung and N.T.Hieu [4] proved by examples that S-metric space is not a generalization of G-

metric space and vice versa. Invariant points of various contractive maps on S-metric spaces were

studied in [ [1], [3], [6]- [8], [11]]. In 2015, F.Khajasteh, Satish Shukla and S.Radenovic [5] introduced

simulation function and the concept of Z-contration in relation to simulation function and proved

an invariant point theorem which generalizes the Banach Contraction principle. Very recently, Murat

Olgun, O.Bicer and T.Alyildiz [10] defined generalized Z-contraction in relation to the simulation

function and proved an invariant point theorem.
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In the year 2019, Nihal Tas, Nihal Ylimaz Ozgur and Nabil Mlaiki [8] proved an invariant point

theorem by employing the collection of simulation mappings on S-metric spaces. In this article, we

generalized the results of Nihal Tas , Nihal Yilmaz Ozgur and N.Mlaiki.

2. Preliminaries

Definition 2.1. [13] Let X 6= ∅, then a mapping S:X3 → [0,∞) is said to be an S-metric on X if:

(S1) S(ξ, ϑ, w) > 0 for all ξ, ϑ, w ∈ X with ξ 6= ϑ 6= w .
(S2) S(ξ, ϑ, w) = 0 if ξ = ϑ = w .

(S3) S(ξ, ϑ, w) ≤ [S(ξ, ξ, a) + S(ϑ,ϑ, a) + S(w,w, a)]
∀ξ, ϑ, w, a ∈ X. Then we call (X,S) is an S-metric space.

Example 2.1. [13] Define S:X3 → [0,∞) by S(ξ, ϑ, w) = d(ξ, ϑ) + d(ξ, w) + d(ϑ,w) for any

ξ, ϑ, w ∈ X, where (X, d) be a metric space. Then (X,S) is an S-metric space.

Example 2.2. [4] Suppose X=R, Collection of all real numbers and let S(ξ, ϑ, w) = |ϑ+ w − 2ξ|+
|ϑ− w | for all ξ, ϑ, w ∈ X. Then (X,S) is an S-metric space.

Example 2.3. [12] Suppose X=R, Collection of all real numbers and let S(ξ, ϑ, w) = |ξ−w |+ |ϑ−w |
for all ξ, ϑ, w ∈ X. Then (X,S) is an S-metric space.

Example 2.4. Suppose X=[0,1] and S:X3 → [0,∞) be defined by

S(ξ, ϑ, w) =

0 if ξ = ϑ = w

max{ξ, ϑ, w} otherwise
.

Then (X,S) is an S-metric space.

Lemma 2.1. [13] In the S-metric space, we observe S(ξ, ξ, ϑ) = S(ϑ,ϑ, ξ).

Lemma 2.2. [4] In the S-metric space, we observe

(i) S(ξ, ξ, ϑ) ≤ 2S(ξ, ξ, w) + S(ϑ,ϑ,w) and
(ii) S(ξ, ξ, ϑ) ≤ 2S(ξ, ξ, w) + S(w,w, ϑ)

Definition 2.2. [13] Let (X,S) be a S-metric space. We have:

(i) If S(ξn, ξn, ξ)→ 0 as n →∞. ,then we say sequence {ξn} ∈ X converges to ξ ∈ X. i.e., for every
ε > 0, it can be found a natural number n0 so that to each n≥ n0, S(ξn, ξn, ξ) < ε and we indicate it

by limn→∞ ξn = ξ.

(ii) a sequence {ξn} ∈ X is known as Cauchy sequence if to each ε > 0, it can be found n0 ∈ N so

that S(ξn, ξn, ξm) < ε for every n,m≥ n0.
(iii)If each Cauchy sequence of X is convergent, then say X is complete.

Definition 2.3. [13] A self map h is defined on S-metric space (X,S) is known as an S-contraction

if we get a constant 0 ≤ τ < 1 so that

S(h(ξ), h(ξ), h(ϑ)) ≤ τS(ξ, ξ, ϑ) for all ξ, ϑ ∈ X.
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Definition 2.4. [5] We say that a mapping γ : [0,∞)× [0,∞)→ R is a simulation mapping if:

(γ1) γ(0, 0) = 0

(γ2) γ(p, q) < q − p for p,q > 0

(γ3) If {pn}, {qn} are sequences of (0,∞) so that limn→∞ pn = limn→∞ qn > 0, then

limn→∞sup γ(pn, qn) < 0.

We indicate Z as the collection of all simulation mappings. For example, γ(p, q) = τq − p for

0≤ τ <1 belongning to Z.

Definition 2.5. [5] Let h be a self map on a metric space (X,d) and γ ∈Z. Then h is known as a

Z-contraction in relation to γ if:

γ(d(hξ, hϑ), d(ξ, ϑ)) ≥ 0 for all ξ, ϑ ∈ X.

By considering the Definition 2.5. It is concluded that each Banach contraction becomes Z-

contraction in relation to γ(p, q) = τq − p with 0 ≤ τ < 1. Further, it can be established from

the definition of the simulation mapping that γ(p, q) < 0 for each p ≥ q > 0. Hence, assume that h

is a Z-contraction in relation to γ ∈ Z then

d(hξ, hϑ) < d(ξ, ϑ) for all distinct ξ, ϑ ∈ X.

Theorem 2.1. [5] In complete metric space (X,d), each Z-contraction has a unique invariant point

and furthermore the invariant point is the limit of every Picard’s sequence.

3. Main Results

Definition 3.1. [13] Let h be a self map on an S-metric space X and γ ∈Z. We say that h is a

contraction if we find a constant 0 ≤ L < 1 such that

S(hξ, hξ, hϑ) ≤ LS(ξ, ξ, ϑ) for all ξ, ϑ ∈ X.

Nihal Tas, N.Y.Ozgur and Nabil Mlaiki [8] defined the Zs -contraction as follows.

Definition 3.2. [8] Let h be a self map on an S-metric space (X, S) and γ ∈Z. Then h is said to be

a Zs -contraction in relation to γ if

γ(S(hξ, hξ, hϑ), S(ξ, ξ, ϑ)) ≥ 0 for all ξ, ϑ ∈ X

Nihal Tas, N.Y.Ozgur and Nabil Mlaiki [8] proved the following theorem.

Theorem 3.1. [8] Let h be a self map on an S-metric space (X, S). Then h has a unique invariant point

a∈ X and the invariant point is the limit of the Picard sequence {ξn}, whenever h is a Zs -contraction

in relation to γ.
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Definition 3.3. Let h be a self map on an S-metric space (X, S) and γ ∈ Z. Then h is said to be

generalized Zs -contraction in relation to γ if

γ(S(hξ, hξ, hϑ),M(ξ, ξ, ϑ)) ≥ 0 f or al l ξ, ϑ ∈ X (3.1)

where M(ξ, ξ, ϑ) = max{S(ξ, ξ, ϑ), S(ξ, ξ, hξ), S(ϑ,ϑ, hϑ), 12 [S(ξ, ξ, hϑ) + S(ϑ,ϑ, hξ)]}

Example 3.1. Let h be a contraction on (X,S). If we take L∈[0,1) and γ(p,q) = Lq-p for all 0 ≤
p, q <∞, then a contraction h is a Zs -contraction in relation to γ. In fact, consider p = S(hξ, hξ, hϑ)

and q = M(ξ, ξ, ϑ). Since h is a contraction, we obtain :

S(hξ, hξ, hϑ) ≤ LS(ξ, ξ, ϑ) ≤ LM(ξ, ξ, ϑ)

=⇒ LM(ξ, ξ, ϑ)− S(hξ, hξ, hϑ) ≥ 0

=⇒ γ(S(hξ, hξ, hϑ),M(ξ, ξ, ϑ)) ≥ 0.

for all ξ, ϑ ∈ X. Therefore, h is a generalized Zs -contraction in relation to γ.

Example 3.2. Consider a complete S-metric space (X,S), where X = [0,1] and S : X3 → [0,∞) by
S(ξ, ϑ, w) = |ξ − w |+ |ϑ− w |. Define h:X → X by

hξ =


2
5 , for ξ ∈ [0,

2
3)

1
5 , for ξ ∈ [

2
3 , 1)

Now we prove that h be a generalized Zs -contraction in relation to γ, where γ is defined by γ(p, q) =
6
7q − p. Now we get

S(hξ, hξ, hϑ) ≤
3

7
[S(ξ, ξ, hξ) + S(ϑ,ϑ, hϑ)]

≤
6

7
max{S(ξ, ξ, hξ), S(ϑ,ϑ, hϑ)}

≤
6

7
M(ξ, ξ, ϑ)

for all ξ, ϑ ∈ X.
That is, we have

γ(S(hξ, hξ, hϑ),M(ξ, ξ, ϑ)) =
6

7
M(ξ, ξ, ϑ)− d(hξ, hξ, hϑ) ≥ 0.

for all ξ, ϑ ∈ X.

Definition 3.4. Let (X,S) be an S-metric space. Then we say that a mapping h:X → X is asymp-

totically regular at ξ ∈ X if limn→∞ S(hnξ, hnξ, hn+1ξ) = 0

By the following lemma, we can conclude that a generalized Zs -contraction is asymptotically regular

at each point of X.

Lemma 3.1. If h : X → X is a generalized Zs -contraction in relation to γ, then h is an asymptotically

regular at each point ξ ∈ X.
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Proof. Let ξ ∈ X. If for some m∈N, we have hmξ = hm−1ξ, that is, hϑ = ϑ, where ϑ = hm−1ξ, then
hnϑ = hn−1hϑ = hn−1ϑ = ... = hϑ = ϑ for each n∈N. Therefore, we have:

S(hnξ, hnξ, hn+1ξ) = S(hn−m+1hm−1ξ, hn−m+1hm−1ξ, hn−m+2hm−1ξ)

= S(hn−m+1ϑ, hn−m+1ϑ, hn−m+2ϑ)

= S(ϑ,ϑ, ϑ)

= 0

Hence

lim
n→∞

S(hnξ, hnξ, hn+1ξ) = 0

Now, we assume that hnξ 6= hn+1ξ, for each n∈N.
From the condition(γ2) and the generalized Zs -contraction property, we get:

0 ≤ γ(S(hn+1ξ, hn+1ξ, hnξ),M(hnξ, hnξ, hn−1ξ)) (3.2)

Where

M(hnξ, hnξ, hn−1ξ) = max{S(hnξ, hnξ, hn−1ξ), S(hnξ, hnξ, hhnξ), S(hn−1ξ, hn−1ξ, hhn−1ξ),
1

2
[S(hnξ, hnξ, hhn−1ξ) + S(hn−1ξ, hn−1ξ, hhnξ)]}

= max{S(hnξ, hnξ, hn−1ξ), S(hnξ, hnξ, hn+1ξ), S(hn−1ξ, hn−1ξ, hnξ),
1

2
[S(hnξ, hnξ, hnξ) + S(hn−1ξ, hn−1ξ, hn+1ξ)}

= max{S(hnξ, hnξ, hn−1ξ), S(hn+1ξ, hn+1ξ, hnξ)}

If S(hn+1ξ, hn+1ξ, hnξ) > S(hnξ, hnξ, hn−1ξ) then, we get

M(hnξ, hnξ, hn−1ξ) = S(hn+1ξ, hn+1ξ, hnξ)

From equation (3.2) we have,

0 ≤ γ(S(hn+1ξ, hn+1ξ, hnξ), S(hn+1ξ, hn+1ξ, hnξ))

< S(hn+1ξ, hn+1ξ, hnξ)− S(hn+1ξ, hn+1ξ, hnξ) = 0

which is a contradiction.

Hence M(hnξ, hnξ, hn−1ξ) = S(hnξ, hnξ, hn−1ξ).

Using generalized Zs -contractive property, we get

0 ≤ γ(S(hn+1ξ, hn+1ξ, hnξ),M(hnξ, hnξ, hn−1ξ))

= γ(S(hn+1ξ, hn+1ξ, hnξ), S(hnξ, hnξ, hn−1ξ))

< S(hnξ, hnξ, hn−1ξ)− S(hn+1ξ, hn+1ξ, hnξ)
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i.e., S(hn+1ξ, hn+1ξ, hnξ) < S(hnξ, hnξ, hn−1ξ) for all n∈N.
Then {S(hnξ, hnξ, hn−1ξ)} is a nonnegative reals of decreasing sequence and so it should be conver-

gent. Suppose limn→∞ S(hnξ, hnξ, hn+1ξ) = η ≥ 0. If η > 0, then from the condition (γ3) and the

generalized Zs -contraction property, we get

0 ≤ lim
n→∞

sup γ(S(hn+1ξ, hn+1ξ, hnξ),M(hnξ, hnξ, hn−1ξ)

= lim
n→∞

sup γ(S(hn+1ξ, hn+1ξ, hnξ), S(hnξ, hnξ, hn−1ξ) < 0

which is a contradiction. It should be η = 0.

Therefore limn→∞ S(hnξ, hnξ, hn+1ξ) = 0.

Hence, h is asymptotically regular at each point ξ ∈ X. �

Lemma 3.2. The Picard sequence {ξn} so that hξn−1 = ξn, to each n∈N the initial point ξ0 ∈ X is

a bounded sequence, whenever h is a generalized Zs -contraction in relation to γ.

Proof. Consider {ξn} be the Picard sequence in X with initial value ξ0. Now we claim that {ξn} is a
bounded sequence.

Assume that {ξn} is unbounded. Let ξn+m 6= ξn, for each m,n∈N.
Since {ξn} is unbounded, we can find a subsequence {ξnk} of {ξn} so that n1 = 1 and to each k∈N,
nk+1 is the smallest integer so that

S(ξnk+1, ξnk+1, ξnk ) > 1 and S(ξm, ξm, ξnk ) ≤ 1 for nk ≤ m ≤ nk+1 − 1
Hence, from the lemma (2.2), we obtain

1 < S(ξnk+1 , ξnk+1 , ξnk )

≤ 2S(ξnk+1 , ξnk+1 , ξnk+1−1) + S(ξnk , ξnk , ξnk+1−1)

≤ 2S(ξnk+1 , ξnk+1 , ξnk+1−1) + 1

Letting k→∞ and using lemma (3.1), we have

lim
n→∞

S(ξnk+1 , ξnk+1 , ξnk ) = 1

1 < S(ξnk+1 , ξnk+1 , ξnk ) ≤ M(ξnk+1−1, ξnk+1−1, ξnk−1)

= max{S(ξnk+1−1, ξnk+1−1, ξnk−1), S(ξnk+1−1, ξnk+1−1, ξnk+1), S(ξnk−1, ξnk−1, ξnk ),
1

2
[S(ξnk+1−1, ξnk+1−1, ξnk ) + S(ξnk−1, ξnk−1, ξnk+1)]}

= max{S(ξnk−1, ξnk−1, ξnk+1−1), S(ξnk+1−1, ξnk+1−1, ξnk+1), S(ξnk−1, ξnk−1, ξnk ),
1

2
[S(ξnk+1−1, ξnk+1−1, ξnk ) + S(ξnk−1, ξnk−1, ξnk+1)]}
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≤ max{2S(ξnk−1, ξnk−1, ξnk ) + S(ξnk+1−1, ξnk+1−1, ξnk ), S(ξnk+1−1, ξnk+1−1, ξnk+1),

S(ξnk−1, ξnk−1, ξnk ),
1

2
[S(ξnk+1−1, ξnk+1−1, ξnk ) + S(ξnk−1, ξnk−1, ξnk+1)]}

≤ max{2S(ξnk−1, ξnk−1, ξnk ) + 1, S(ξnk+1−1, ξnk+1−1, ξnk+1),

S(ξnk−1, ξnk−1, ξnk ),
1

2
[1 + 2S(ξnk−1, ξnk−1, ξnk ) + S(ξnk , ξnk , ξnk+1)]}

Letting n→ ∞, we get

1 ≤ lim
k→∞

M(ξnk+1−1, ξnk+1−1, ξnk−1) ≤ 1.

That is limk→∞M(ξnk+1−1, ξnk+1−1, ξnk−1) = 1

From the condition(γ3) and the generalized Zs -contraction property, we obtain

0 ≤ lim
k→∞

sup γ(S(ξnk+1 , ξnk+1 , ξnk ),M(ξnk+1−1, ξnk+1−1, ξnk−1))

= lim
k→∞

sup γ(S(ξnk+1 , ξnk+1 , ξnk ), S(ξnk+1−1, ξnk+1−1, ξnk−1)) < 0

which is a contradiction. Hence our assumption is wrong.

Therefore {ξn} is bounded. �

Theorem 3.2. Let h be a self map defined on complete S-metric space (X, S). Then h has a unique

invariant point a ∈ X and Picard sequence {ξn} converges to the invariant element a, whenever h is

a generalized Zs -contraction in relation to γ.

Proof. Let the Picard sequence {ξn} be defined as hξn−1 = ξn, ∀n ∈N and ξ0 ∈ X. Now, we claim

that {ξn} be a cauchy sequence. To get this, Consider

Tn = sup{S(ξi , ξi , ξj) : i , j ≥ n}.

Clearly {Tn} be a nonnegative reals of decreasing sequence. Hence, we can find τ ≥ 0 so that

limn→∞ Tn = τ . Now we prove that τ = 0. If possible suppose that τ > 0. From the definition of Tn,

for each k∈N, we can find mk , nk so that k ≤ nk < mk and

Tk −
1

k
< S(ξmk , ξmk , ξnk ) ≤ Tk

Therefore, we get limn→∞ S(ξmk , ξmk , ξnk ) = τ .

From the lemma (2.2), lemma (3.1) and generalized Zs -contraction property, we get

S(ξmk , ξmk , ξnk ) ≤ S(ξmk−1, ξmk−1, ξnk−1)

≤ 2S(ξmk−1, ξmk−1, ξmk ) + S(ξnk−1, ξnk−1, ξmk )

≤ 2S(ξmk−1, ξmk−1, ξmk ) + 2S(ξnk−1, ξnk−1, ξnk ) + S(ξmk , ξmk , ξnk )

Letting as k→ ∞, we have

lim
k→∞

S(ξmk−1, ξmk−1, ξnk−1) = τ
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S(ξmk−1, ξmk−1, ξnk−1) ≤ M(ξmk−1, ξmk−1, ξnk−1)

= max{S(ξmk−1, ξmk−1, ξnk−1), S(ξmk−1, ξmk−1, hξmk−1), S(ξnk−1, ξnk−1, hξnk−1),
1

2
[S(ξmk−1, ξmk−1, hξnk−1) + S(ξnk−1, ξnk−1, hξmk−1)]}

= max{S(ξmk−1, ξmk−1, ξnk−1), S(ξmk−1, ξmk−1, ξmk ), S(ξnk−1, ξnk−1, ξnk ),
1

2
[S(ξmk−1, ξmk−1, ξnk ) + S(ξnk−1, ξnk−1, ξmk )]}

≤ max{S(ξmk−1, ξmk−1, ξnk−1), S(ξmk−1, ξmk−1, ξmk ), S(ξnk−1, ξnk−1, ξnk ),
1

2
[2S(ξmk−1, ξmk−1, ξmk ) + S(ξmk , ξmk , ξnk )+

2S(ξnk−1, ξnk−1, ξnk ) + S(ξnk , ξnk , ξmk )]}

Letting k → ∞, we get

lim
k→∞

M(ξmk−1, ξmk−1, ξnk−1) = τ.

From the condition (γ3) and the generalized Zs -contraction property, we have

0 ≤ lim
k→∞

sup γ(S(ξmk , ξmk , ξnk ),M(ξmk−1, ξmk−1, ξnk−1)) < 0

This is a contraction, Hence, τ = 0.

That is {ξn} is a cauchy sequence in the complete S-metric space X, we can find η ∈ X so that

limn→∞ ξn = η.

Now we verify that, η is an invariant point of h.

If suppose hη 6= η, then S(η, η, hη) = S(hη, hη, η) > 0.
Now,

M(ξn, ξn, η) =max{S(ξn, ξn, η), S(ξn, ξn, hξn), S(η, η, hη),
1

2
[S(ξn, ξn, hη) + S(η, η, hξn)]}

lim
n→∞

M(ξn, ξn, η) = max{S(η, η, η), S(η, η, η), S(η, η, hη),
1

2
[S(η, η, hη) + S(η, η, η)]}

= S(η, η, hη)

From the conditions (γ2), (γ3) and Zs -contraction property, we get

0 ≤ lim
n→∞

sup γ(S(hξn, hξn, hη),M(ξn, ξn, η)) < 0

This is contradiction. Hence S(η, η, hη) = 0 =⇒ hη = η.

Hence, η is a invariant point of h.

Now we claim that η is unique. Suppose α is an element in X such that α 6= η and hα = α.
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Now,

M(η, η, α) = max{S(η, η, α), S(η, η, hη), S(α,α, hα),
1

2
[S(η, η, hα) + S(α,α, hη]}

= max{S(η, η, α), S(η, η, η), S(α,α,α),
1

2
[S(η, η, α) + S(α,α, η)]}

= S(η, η, α)

From the condition (γ2) and Zs -contraction property, we get

0 ≤ γ(S(hη, hη, hα),M(η, η, α)) = γ(S(hη, hη, hα), S(η, η, α))

< S(η, η, α)− S(η, η, α) = 0,

This is a contradiction. It should be η = α. �

Example 3.3. Consider a complete S-metric space (X, S), where X = [0, 14 ] and S : X
3 → [0,∞) by

S(ξ, ϑ, w) = |ξ − w | + |ξ − 2ϑ + w |. Define h: X → X by hξ = ξ
1+ξ . From example 2.9 in [5], we

have h be a Z-contraction in relation to γ ∈ Z, where γ(p, q) = q

q+ 1
4

− p, for any p,q∈ [0,∞)
Therefore for all ξ, ϑ ∈ X, we get

0 ≤ γ(S(hξ, hξ, hϑ), S(ξ, ξ, ϑ))

=
S(ξ, ξ, ϑ)

S(ξ, ξ, ϑ) + 14
− S(hξ, hξ, hϑ)

≤
M(ξ, ξ, ϑ)

M(ξ, ξ, ϑ) + 14
− S(hξ, hξ, hϑ)

= γ(S(hξ, hξ, hϑ),M(ξ, ξ, ϑ))

Thus, h is generalized Zs -contraction in relation to γ, for some γ ∈ Z. So, by using Theorem 3.2, h

has a unique invariant point a=0.
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Abstract Fixed points are also called as invariant points.
Invariant point theorems are very essential tools in solving
problems arising in different branches of mathematical
analysis. In the present paper, we establish three unique
common invariant point theorems using two self-mappings,
four self-mappings and six self-mappings in the bicomplex
valued metric space. In the first theorem, we generate a com-
mon invariant point theorem for four self-mappings by using
weaker conditions such as weakly compatible, generalized
contraction and (CLRAB) property. Then, in the second
theorem, we generate a common invariant point theorem for
six self-mappings by using inclusion relation, generalized
contraction, weakly compatible and commuting maps. Further,
in the third theorem, we generate a common coupled invariant
point for two self mappings using different contractions in
the bicomplex valued metric space. The above results are
the extention and generalization of the results of [11] in the
Bicomplex metric space. Moreover, we provide an example
which supports the results.

Keywords Bicomplex Valued Metric Space, Common
Fixed Point, Coupled Fixed Point, CLR Property, Weakly
Compatible Mappings

1 Introduction
The concepts of bicomplex numbers and tricomplex num-

bers were introduced in the year 1892 by Segre[1]. Complex
valued metric spaces are introduced by Azam et al.[2], in the
year 2011 and some results were studied for such spaces. Very
recently, the bicomplex valued metric space was introduced by

Cho et al.[5] and some fixed point results were obtained. In the
year 2019, Jebril, Datta, Sarkar and Biswas [6] derived some
fixed point outcomes using rational contractions in bicomplex
valued metric space.

Imdad et al.[8] introduced a new notion, called CLR-
property for self maps in 2012. Afterwards, by using it several
mathematicians obtained some fixed point results ([3],[4],[9]
and [10]). The main purpose of this work is to prove some
invariant point outcomes using various contractions for four
self mappings, six self mappings and coupled invariant point
theorems using weakly compatibility, CLRAB property and
commuting maps in bicomplex valued metric spaces.

2 Preliminaries
We denote C0 = R(Real numbers), C1 = C(Complex num-

bers) and C2 = Set of all bicomplex numbers.
Let ϖ,ϑ ∈ C1, then we define a partial order ⪯ on C1 as:
ϖ ⪯ ϑ ⇐⇒ Re(ϖ) ≤ Re(ϑ) and Im(ϖ) ≤ Im(ϑ).
Also ϖ ≺ ϑ if Re(ϖ) < Re(ϑ) and Im(ϖ) < Im(ϑ).
Segre[1] defined the bicomplex number as:

ζ =b1 + b2i1 + b3i2 + b4i1i2,

where b1, b2, b3, b4 ∈ C0, and i1, i2 are the independent units
such that i21 = i22 = −1 and i1i2 = i2i1,
we defined C2 as:

C2 = {ζ : ζ = b1 + b2i1 + b3i2 + b4i1i2, b1, b2, b3, b4 ∈ C0},

i.e.,

C2 = {ζ : ζ = ϖ + i2ϑ,ϖ, ϑ ∈ C1}



Mathematics and Statistics 10(6): 1334-1339, 2022 1335

where ϖ = b1 + b2i1 ∈ C1 and ϑ = b3 + b4i1 ∈ C1.
If ζ=ϖ + i2ϑ and γ = u + i2v then ζ ± γ =
(ϖ + i2ϑ) ± (u + i2v) = (ϖ ± u) + i2(ϑ ± v) and the
product is ζ.γ=(ϖ+i2ϑ).(u+i2v)=(ϖu−ϑv)+i2(ϖv+ϑu).

The norm ∥.∥ : C2 → C+
0 is

defined by
∥ζ∥ = ∥ϖ + i2ϑ∥ ={|ϖ|2 + |ϑ|2} 1

2 = (b21 + b22 + b23 + b24)
1
2

where ζ = b1 + b2i1 + b3i2 + b4i1i2 = ϖ + i2ϑ ∈ C2

We define a partial order ⪯i2 On C2 as:
For ζ = ϖ + i2ϑ, γ = u+i2v ∈ C2 then
ζ ⪯i2 γ ⇐⇒ if ϖ ⪯ u and ϑ ⪯ v.
that is, ζ ⪯i2 γ if :
(1) ϖ = u, ϑ = v or
(2) ϖ ≺ u, ϑ = v or
(3) ϖ = u, ϑ ≺ v or
(4) ϖ ≺ u, ϑ ≺ v.

For any two bicomplex numbers ζ, γ ∈ C2 :
(i) ζ ⪯i2 γ =⇒ ∥ζ∥ ≤ ∥γ∥
(ii) ∥ζ + γ∥ ≤ ∥ζ∥+ ∥γ∥

Definition2.1.[5]Let Ω be a nonempty set. Then the
mapping ∂ : Ω × Ω → C2 is said to bicomplex-valued metric
on Ω if
1. 0 ⪯i2 ∂(ϖ,ϑ) for all ϖ,ϑ ∈ Ω,
2. ∂(ϖ,ϑ) = 0 ⇐⇒ ϖ = ϑ,
3. ∂(ϖ,ϑ) = ∂(ϑ,ϖ) for all ϖ,ϑ ∈ Ω and
4. ∂(ϖ,ϑ) ⪯i2 ∂(ϖ,u) + ∂(u, ϑ) for all ϖ,ϑ, u ∈ Ω.
Here (Ω, ∂) is called the bicomplex valued metric space.

Let (Ω, ∂) be a bicomplex valued metric space for the
following definitions:
Definition 2.2.[5]
(1). A sequence {ϖn} in Ω is said to be converges to ϖ if
for each 0 ≺i2 r ∈C2 ∃ n0 ∈ N such that ∂(ϖn, ϖ)≺i2 r, ∀
n > n0 and we write limn→∞ ϖn = ϖ.
(2). A sequence {ϖn} in Ω is said to be a cauchy sequence if
for each 0 ≺i2 r ∈C2 ∃ n0 ∈ N such that ∂(ϖn, ϖn+m)≺i2 r,
∀ m,n ∈ N and n > n0.
(3.) We say that (Ω, ∂) is complete if each cauchy sequence of
Ω is convergent.

Definition 2.3. We say that two maps h, k : Ω → Ω are
commutes if hk(ϖ) = kh(ϖ) for all ϖ ∈ Ω.

Definition 2.4. We say that two maps h, k : Ω → Ω are com-
patible if limn→∞ ∂(hkϖn, khϖn) = 0 whenever sequence
{ϖn} in Ω satisfies limn→∞ hϖn = limn→∞ kϖn = ϖ for
ϖ ∈ Ω.

Definition 2.5. We say that two maps h, k : Ω → Ω
are weakly compatible if hϖ = kϖ for some ϖ ∈ Ω implies
hk(ϖ) = kh(ϖ).

Definition 2.6. Let h,k,A,B : Ω → Ω be four maps.
We say that {h,A} and {k,B} are satisfy the CLRAB

property if we can find sequences {ϖn} and {ϑn} in Ω
satisfies limn→∞ hϖn = limn→∞ Aϖn = limn→∞ kϑn =
limn→∞ Bϑn = ϖ for some ϖ ∈ A(Ω)∩B(Ω).

Definition 2.7. Let h : Ω × Ω → Ω be a function.
Then we say an element (ϖ,ϑ) ∈ Ω × Ω is coupled invariant
point of h if h(ϖ,ϑ) = ϖ and h(ϑ,ϖ) = ϑ.

Lemma 2.1.[7] We say a sequence {wn} in Ω is converges to
a point w ⇐⇒ limn→∞ ∥∂(wn, w)∥ = 0.

3 Main Results

Theorem 3.1. Suppose (Ω, ∂) be a complete Bicomplex
valued metric space and h,k,A and B are self mappings on Ω
satisfying
(i) ∂(hϖ, kϑ) ⪯i2 τ1∂(Aϖ,Bϑ) + τ2∂(Aϖ,hϖ) +
τ3∂(Bϑ, kϑ), ∀ϖ,ϑ ∈ Ω,
where τ1,τ2 and τ3 be nonnegative real number such that
τ1 + τ2 + τ3 < 1.
(ii) {B, k} and {A, h} be weakly compatible,
(iii) {B, k} and {A, h} satisfy CLRAB property.
Then h,k,A and B have a one and only common invariant
point.
Proof: Since {B, k} and {A, h} satisfy CLRAB property,
then there exists sequences {ϖn} and {ϑn} in Ω such
that limn→∞ hϖn = limn→∞ Aϖn = limn→∞ kϑn =
limn→∞ Bϑn = ȷ, for some ȷ ∈ AΩ ∩ BΩ. Then ȷ = Bη1 =
Aη2, for some η1, η2 ∈ Ω.
Now we prove that kη1= Bη1. For each n∈ N, we have
∂(hϖn, kη1) ⪯i2 τ1∂(Aϖn, Bη1) + τ2∂(Aϖn, hϖn) +
τ3∂(Bη1, kη1)
Letting n → ∞ , we get
∂(Bη1, kη1) ⪯i2 τ1∂(Bη1, Bη1) + τ2∂(Bη1, Bη1) +
τ3∂(Bη1, kη1)
i.e.,∂(Bη1, kη1) ⪯i2 τ3∂(Bη1, kη1)
Therefore we have
∥∂(Bη1, kη1)∥ ≤ τ3 ∥∂(Bη1, kη1)∥
which is a contradiction, since τ1 + τ2 + τ3 < 1
Therefore we get ∥∂(Bη1, kη1)∥ = 0. Thus Bη1 = kη1.
Now we prove that Aη2 = hη2. For each n∈ N, we condider
∂(hη2, kϑn) ⪯i2 τ1∂(Aη2, Bϑn) + τ2∂(Aη2, hη2) +
τ3∂(Bϑn, kϑn)
Letting n →∞, we get
∂(hη2,Aη2) ⪯i2 τ1∂(Aη2, Aη2) + τ2∂(Aη2, hη2) +
τ3∂(Aη2, Aη2)
i.e., ∂(hη2,Aη2) ⪯i2 τ2∂(hη2,Aη2)
Therefore we have ∥∂(hη2,Aη2)∥ ≤ τ2∥∂(hη2,Aη2)∥
which is a contradiction, since τ1 + τ2 + τ3 < 1
Therefore, we get ∥∂(hη2,Aη2)∥ = 0. Thus hη2 = Aη2.
Hence Bη1 = kη1 = hη2 = Aη2 = ȷ.
Given that {A, h} is weakly compatible and hη2 = Aη2 then
we get hAη2 = Ahη2. So, hȷ=Aȷ.
Given that {B, k} is weakly compatible and kη1 = Bη1 then
we get kBη1 = Bkη1. So, kȷ = Bȷ.
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Now we prove that hȷ = ȷ:
Consider ∂(hȷ,kη1) ⪯i2 τ1∂(Aȷ,Bη1) + τ2∂(Aȷ,hȷ) +
τ3∂(Bη1,kη1)
i.e,, ∂(hȷ,,ȷ) ⪯i2 τ1∂(hȷ,ȷ) + τ2∂(hȷ,hȷ) + τ3∂(ȷ,ȷ)
i.e,, ∂(hȷ,,ȷ) ⪯i2 τ1∂(hȷ,ȷ)
Therefore we have ∥∂(hȷ,ȷ)∥ ≤ τ1 ∥∂(hȷ,ȷ)∥
which is a contradiction, since τ1 + τ2 + τ3 < 1
Therefore, we get ∥∂(hȷ,ȷ)∥ = 0. Thus hȷ = ȷ. So, we have hȷ
= ȷ = Aȷ.
Now we prove that kȷ = ȷ:
Consider
∂(hη2,kȷ) ⪯i2 τ1∂(Aη2,Bȷ) + τ2∂(Aη2,hη2) + τ3∂(Bȷ,kȷ)
i.e., ∂(ȷ,kȷ) ⪯i2 τ1∂(ȷ,kȷ) + τ2∂(ȷ,ȷ) + τ3∂(kȷ,kȷ)
Therefore we have ∥∂(ȷ,kȷ)∥ ≤ τ1∥∂(ȷ,kȷ)∥
which is a contradiction, since τ1 + τ2 + τ3 < 1.
Therefore, we get ∥∂(ȷ,kȷ)∥ = 0. Thus kȷ = ȷ. So, we have kȷ
= ȷ = Bȷ.
Hence hȷ = Aȷ = ȷ = kȷ = Bȷ.
Therefore ȷ is common invariant point of A,h,k and B.
Now we prove ȷ is unique:
For this, we consider δ is any other common invariant point of
h,k,A and B.
Then hδ = kδ = Aδ = Bδ = δ.
Now, Consider
∂(ȷ,δ) = ∂(hȷ,kδ) ⪯i2 τ1∂(Aȷ,Bδ) + τ2∂(Aȷ,hȷ) + τ3∂(Bδ,kδ)
i.e., ∂(ȷ,δ) ⪯i2 τ1∂(ȷ,δ) + τ2∂(ȷ,ȷ) + τ3∂(δ,δ)
i.e., ∂(ȷ,δ) ⪯i2 τ1 ∂(ȷ,δ)
Therefore we have ∥∂(ȷ,δ)∥ ≤ τ1∥∂(ȷ,δ)∥
which is a contradiction, since τ1 + τ2 + τ3 < 1
Hence, we get ∥∂(ȷ, δ)∥ = 0.Thus ȷ = δ.
Hence, ȷ is the one and only one common invariant point of
h,k,A and B.

Example 3.1. Consider Ω = [0,1] and define ∂ : Ω × Ω → C2

by

∂(ϖ,ϑ) =

{
0, for ϖ = ϑ and

i2max{ϖ,ϑ}, otherwise

for all ϖ,ϑ ∈ Ω.
Define h,k,A and B be self maps on Ω defined as:
For ϖ ∈ Ω, h(ϖ) = ϖ

3 , k(ϖ) = ϖ
3 , A(ϖ) = ϖ and

B(ϖ) = ϖ.
Case(i): We show that {h,A} and {k,B} satisfy CLRAB

property. For this , we choose ϖn = 1
2n and ϑn = 1

3n+1
for n∈ N. Clearly, < ϖn > and < ϑn > are in Ω. Then
∂(Aϖn, 0) = ∂( 1

2n , 0) converges to 0 as n → ∞. Also,
∂(hϖn, 0) = ∂( 1

6n , 0) converges to 0 as n → ∞. Similarly,
we get ∂(kϑn, 0) = ∂( 1

9n+1 , 0) → 0 as n → ∞. and
∂(Bϑn, 0) = ∂( 1

3n+1 , 0)→ 0 as n → ∞.
Since A0 = 0 = B0, So, we have 0 ∈ AΩ ∩BΩ. Therefore, we
have sequences {ϖn} and {ϑn} in Ω so that limn→∞ hϖn =
limn→∞ Aϖn = limn→∞ kϑn = limn→∞ Bϑn = 0. Thus
{h,A} and {k,B} satisfies CLRAB property.
case(ii): we show that {h,A} and {k,B} are weakly compati-
ble. Now, hϖ = Aϖ =⇒ ϖ

3 = ϖ =⇒ ϖ = 0 and hA(0)
= h(0) = 0 and Ah(0) = A(0) = 0. Thus hA(ϖ) = Ah(ϖ),
whenever hϖ = Aϖ, for all ϖ ∈ Ω. Hence {h,A} is weakly
compatible in Ω.

Also, kϖ = Bϖ =⇒ ϖ
3 = ϖ =⇒ ϖ = 0 and kB(0) =

Bk(0). Thus, kB(ϖ) = Bk(ϖ), whenever kϖ = Bϖ for all
ϖ ∈ Ω. Hence, {k,B} is weakly compatible in Ω.
case(iii): Now, ∂(hϖ, kϑ) = ∂(ϖ3 ,

ϑ
3 ) = i2max{ϖ

3 ,
ϑ
3 },

∂(Aϖ,Bϑ) = ∂(ϖ,ϑ) = i2max{ϖ,ϑ},
∂(Aϖ,hϖ) = ∂(ϖ, ϖ

3 ) = i2max{ϖ, ϖ
3 } = i2ϖ,

∂(Bϑ, kϑ) = ∂(ϑ, ϑ
3 ) = i2max{ϑ, ϑ

3 } = i2ϑ.
subcase(i) if ϖ > ϑ then
∂(hϖ, kϑ) = i2max{ϖ

3 ,
ϑ
3 } = i2

ϖ
3 ,

∂(Aϖ,Bϑ) = i2max{ϖ,ϑ} = i2ϖ,
∂(Aϖ,hϖ) = i2max{ϖ, ϖ

3 } = i2ϖ, ∂(Bϑ, kϑ) = i2ϑ.
Now, ∂(hϖ, kϑ) = i2

ϖ
3 ⪯i2

1
4 [i2ϖ] + 1

4 [i2ϖ] + 1
4 [i2ϑ]

i.e., ∂(hϖ, kϑ) ⪯i2
1
4∂(Aϖ,Bϑ) + 1

4∂(Aϖ,hϖ) +
1
4∂(Bϑ, kϑ)
By choosing τ1 = 1

4 , τ2 = 1
4 , τ3 = 1

4 , Here τ1,τ2,τ3 be nonnega-
tive real numbers such that τ1 +τ2 + τ3 < 1. Hence
d(hϖ, kϑ) ⪯i2 τ1d(Aϖ,Bϑ)+τ2d(Aϖ,hϖ)+τ3d(Bϑ, kϑ).
subcase(ii) if ϖ < ϑ then
∂(hϖ, kϑ) = i2max{ϖ

3 ,
ϑ
3 } = i2

ϑ
3 ,

∂(Aϖ,Bϑ) = i2max{ϖ,ϑ} = i2ϑ,
∂(Aϖ,hϖ) = i2max{ϖ, ϖ

3 } = i2ϖ, ∂(Bϑ, kϑ) = i2ϑ.
Now, ∂(hϖ, kϑ) = i2

ϑ
3 ⪯i2

1
4 [i2ϑ] +

1
4 [i2ϖ] + 1

4 [i2ϑ]
i.e., ∂(hϖ, kϑ) ⪯i2

1
4∂(Aϖ,Bϑ) + 1

4∂(Aϖ,hϖ) +
1
4∂(Bϑ, kϑ)
By choosing τ1 = 1

4 , τ2 = 1
4 , τ3 = 1

4 ,
Here τ1,τ2,τ3 be nonnegative real numbers such that τ1 +τ2 +
τ3 < 1. Hence
∂(hϖ, kϑ) ⪯i2 τ1∂(Aϖ,Bϑ)+τ2∂(Aϖ,hϖ)+τ3∂(Bϑ, kϑ).

Corollary 3.1. Suppose (Ω, ∂) be a complete Bicom-
plex valued metric space and h,k and A be self mappings on Ω
satisfies
(i) ∂(hz, kw) ⪯i2 τ1∂(Az,Aw) + τ2∂(Az, hz) +
τ3∂(Aw, kw), for all z,w ∈ Ω, where τ1,τ2 and τ3 be
nonnegative real number such that τ1 + τ2 + τ3 < 1.
(ii) {h,A} and {k,A} are weakly compatible,
(iii) {h,A} and {k,A} satisfy CLRA property.
Then h,k and A have a unique common invariant point.
Proof: We can prove this results easily by substituting B = A
in the Theorem 3.1.

Theorem 3.2. Suppose (Ω, ∂) be a complete Bicomplex
valued metric space and H,I,C,P,Q,R be the self mappings
on Ω satisfies (i) H(Ω) ⊇ QR(Ω) and I(Ω) ⊇ CP(Ω) (ii)
∂(CPϖ,QRϑ) ⪯i2 τ1∂(Hϖ, Iϑ) + τ2∂(Hϖ,CPϖ) +
τ3∂(Iϑ,QRϑ) + τ4∂(Hϖ,QRϑ) for all ϖ,ϑ ∈ Ω, where
τ1,τ2,τ3 and τ4 be nonnegative real number such that
τ1 + τ2 + τ3 + 2τ4 < 1. (iii) Suppose (QR,I) and (CP,H) be
weakly compatible. (Q,R), (Q,I) (R,I),(C,P),(C,H) and (P,H)
are pairs of commuting maps. Then Q,R,C,P,I and H contains
one and only one common invariant point in Ω.
Proof: Let ϖ0 ∈ Ω. Since H(Ω) ⊇ QR(Ω) and I(Ω) ⊇ CP(Ω)
then we can find a sequence {ϖ′

n} in Ω such that
CPϖ2l = Iϖ2l+1 = ϖ

′

2l and QRϖ2l+1 = Hϖ2l+2 = ϖ
′

2l+1 for
l=0,1,2,....
Consider ∂(ϖ

′

2l, ϖ
′

2l+1) = ∂(CPϖ2l, QRϖ2l+1)
⪯i2 τ1∂(Hϖ2l, Iϖ2l+1) + τ2∂(Hϖ2l, CPϖ2l)
+ τ3∂(Iϖ2l+1, QRϖ2l+1) + τ4∂(Hϖ2l, QRϖ2l+1)
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= τ1 ∂(ϖ
′

2l−1, ϖ
′

2l) + τ2 ∂(ϖ
′

2l−1, ϖ
′

2l) + τ3 ∂(ϖ
′

2l, ϖ
′

2l+1)
+ τ4 ∂(ϖ

′

2l−1, ϖ
′

2l+1)
= τ1 ∂(ϖ

′

2l−1, ϖ
′

2l) + τ2 ∂(ϖ
′

2l−1, ϖ
′

2l) + τ3 ∂(ϖ
′

2l, ϖ
′

2l+1)
+ τ4 [∂(ϖ

′

2l−1, ϖ
′

2l)+ ∂(ϖ
′

2l, ϖ
′

2l+1)]
i.e., (1 − τ3 − τ4) ∂(ϖ

′

2l, ϖ
′

2l+1) ⪯i2 (τ1 + τ2 + τ4)
∂(ϖ

′

2l−1, ϖ
′

2l)
i.e., ∂(ϖ

′

2l, ϖ
′

2l+1) ⪯i2 ( τ1+τ2+τ4
1−τ3−τ4

) ∂(ϖ
′

2l−1, ϖ
′

2l)
Similarly, we consider
∂(ϖ

′

2l+1, ϖ
′

2l+2) = ∂(QRϖ2l+1, CPϖ2l+2)
= ∂(CPϖ2l+2, QRϖ2l+1)
⪯i2 τ1 ∂(Hϖ2l+2, Iϖ2l+1) + τ2 ∂(Hϖ2l+2, CPϖ2l+2)
+ τ3 ∂(Iϖ2l+1, QRϖ2l+1) + τ4 ∂(Hϖ2l+2, QRϖ2l+1)
= τ1 ∂(ϖ

′

2l+1, ϖ
′

2l) + τ2 ∂(ϖ
′

2l+1, ϖ
′

2l+2)
+ τ3 ∂(ϖ

′

2l, ϖ
′

2l+1) + τ4 ∂(ϖ
′

2l+1, ϖ
′

2l+1)
i.e.,(1-τ2) ∂(ϖ

′

2l+1, ϖ
′

2l+2) ⪯i2 (τ1 + τ3)∂(ϖ
′

2l, ϖ
′

2l+1)
i.e.,∂(ϖ

′

2l+1, ϖ
′

2l+2) ⪯i2 ( τ1+τ3
1−τ2

)∂(ϖ
′

2l, ϖ
′

2l+1)
Let us consider σ = max { τ1+τ2+τ4

1−τ3−τ4
, τ1+τ3

1−τ2
}

then σ <1, Since τ1 + τ2 + τ3 + 2τ4 < 1.
Now, for m,l ∈ N and l < m, we consider
∂(ϖ

′

l , ϖ
′

m) ⪯i2 ∂(ϖ
′

l , ϖ
′

l+1) + ∂(ϖ
′

l+1, ϖ
′

l+2) +.....
+ ∂(ϖ

′

m−1, ϖ
′

m)
⪯i2 (σl + σl+1 + ......+ σm−1)∂(ϖ

′

0, ϖ
′

1)
i.e., ∂(ϖ

′

l , ϖ
′

m) ⪯i2 ( σl

1−σ )∂(ϖ
′

0, ϖ
′

1)
Therefore we obtain
∥∂(ϖ′

l , ϖ
′

m)∥ ⪯i2 ( σl

1−σ )∥∂(ϖ
′

0, ϖ
′

1)∥
Since σ < 1, as n,m → ∞, we get ∥∂(ϖ′

l , ϖ
′

m)∥ → 0
Hence {ϖ′

n} be a cauuchy sequence in complete space Ω, then
∃ ȷ ∈ Ω such that
limn→∞ CPϖ2n = limn→∞ Iϖ2n+1 = limn→∞ QRϖ2n+1 =
limn→∞ Pϖ2n+2 = ȷ.
Since QR(Ω) ⊆ H(Ω), then ∃ z ∈ Ω such that Hz = ȷ.
Now we consider
∂(CPz, ȷ) ⪯i2 ∂(CPz,QRϖ2n+1) + ∂(QRϖ2n+1, ȷ)
⪯i2 τ1∂(Hz, Iϖ2n+1) + τ2 ∂(Hz,CPz)
+ τ3 ∂(Iϖ2n+1, QRϖ2n+1)
+ τ4 ∂(Hz,QRϖ2n+1) + ∂(QRϖ2n+1, ȷ)
Letting n → ∞, we have
(CPz, ȷ) ⪯i2 τ1∂(ȷ, ȷ) + τ2∂(ȷ, CPz) + τ3∂(ȷ, η)
+ τ4∂(ȷ, ȷ) + ∂(ȷ, ȷ)
Therefore we get
∥∂(CPz, ȷ)∥ ≤ τ2∥∂(CPz, ȷ)∥
which is a contradiction, Since τ1 + τ2 + τ3 + 2τ4 < 1.
Therefore we get, ∥∂(CPz, ȷ)∥ = 0.
Hence CPz = Hz = ȷ.
Again Since, CP(Ω) ⊆ I(Ω), so there exists w ∈ Ω with Iw = ȷ.
Now we consider,
∂(ȷ,QRw) = ∂(CPz,QRw)
⪯i2 τ1∂(Hz, Iw) + τ2∂(Hz,CPz) + τ3∂(Iw,QRw)
+ τ4∂(Hz,QRw)
i.e., ∂(ȷ,QRw) ⪯i2 (τ3 + τ4)∂(ȷ,QRw)
i.e., ∥∂(ȷ,QRw)∥ ⪯i2 (τ3 + τ4)∥∂(ȷ,QRw)∥
which is a contradiction, Since τ1 + τ2 + τ3 + 2τ4 < 1.
Therefore we get,∥∂(ȷ,QRw)∥ = 0.
Hence QRw = ȷ = Iw.
Thus we get CPz = Hz = QRw = Iw = ȷ.

Since I and QR are weakly compatible, then I(QR)w = QR(I)w
implies Iȷ = QRȷ.
Since CP and H are weakly compatible, then (CP)Hz = H(CP)z
implies CPȷ = Hȷ.
Now we show that CPȷ = Hȷ = ȷ:
We now consider
∂(CPȷ, ȷ) = ∂(CPȷ,QRw)
⪯i2 τ1∂(Hȷ, IIw) + τ2∂(Hȷ,CPȷ) + τ3∂(Iw,QRw)
+ τ4∂(Hȷ,QRw)
= τ1∂(CPȷ, ȷ) + τ2∂(Hȷ,Hȷ) + τ3∂(Iw, Iw)
+ τ4∂(CPȷ, ȷ)
i.e., ∂(CPȷ, ȷ) ⪯i2 (τ1 + τ4)∂(CPȷ, ȷ)
i.e., ∥∂(CPȷ, ȷ)∥ ≤ (τ1 + τ4)∥∂(CPȷ, ȷ)∥
which is a contradiction, Since τ1 + τ2 + τ3 + 2τ4 < 1.
Therefore, we get ∥∂(CPȷ, ȷ)∥ = 0.
Hence CPȷ = ȷ = Hȷ.
Now, we show that QRȷ = ȷ :
We now consider
∂(ȷ,QRȷ) = ∂(CPȷ,QRȷ)
⪯i2 τ1∂(Hȷ, Iȷ) + τ2∂(Hȷ,CPȷ) + τ3∂(Iȷ,QRȷ)
+ τ4∂(Hη,QRη)
= τ1∂(ȷ,QRȷ) + τ2∂(Hȷ,Hȷ) + τ3∂(Iȷ, Iȷ)
+ τ4∂(ȷ,QRȷ)
i.e., ∂(ȷ,QRȷ) ⪯i2 (τ1 + τ4)∂(ȷ,QRȷ)
i.e., ∥∂(ȷ,QRȷ)∥ ≤ (τ1 + τ4)∥∂(ȷ,QRȷ)∥
which is a contradiction, Since τ1 + τ2 + τ3 + 2τ4 < 1.
Therefore, we get ∥∂(ȷ,QRȷ)∥ = 0.
Hence, QRȷ = ȷ = Iȷ.
Thus, we get CPȷ = Hȷ = QRȷ = Iȷ = ȷ.
So, ȷ be a common invariant point of H,I,CP and QR.
Since we have commuting conditions of pairs, we get
Qȷ = Q(QRȷ) = Q(RQȷ) = (QR)Qȷ and
Qȷ = Q(Hȷ) = H(Qȷ);
Rȷ = R(Hȷ) = HRȷ and
Rȷ = R(QRȷ) = (RQ)Rȷ = (QR)Rȷ.
Thus Qȷ and Rȷ are common invariant points of (QR,H).
Therefore, we get Qȷ = ȷ = Rȷ = Hȷ = QRȷ.
Simiarly, we can easily prove, Cȷ = ȷ = Pȷ = Iȷ = CPȷ.
Thus, ȷ be a common invariant point of H,I,C,P,Q and R.
Now we prove ȷ is unique. Suppose γ be common invariant
point of H,I,C,P,Q and R other than ȷ.
Now we consider,
∂(ȷ, γ) = ∂(CPȷ,QRγ)
⪯i2 τ1∂(Hȷ, Iγ) + τ2∂(Hȷ,CPη) + τ3∂(Iγ,QRγ)
+ τ4∂(Hȷ,QRγ)
i.e., ∂(ȷ, γ) ⪯i2 (τ1 + τ4)∂(ȷ, γ)
i.e.,∥∂(ȷ, γ)∥ ⪯i2 (τ1 + τ4)∥∂(ȷ, γ)∥
which is a contradiction, Since τ1 + τ2 + τ3 + 2τ4 < 1.
Therefore, we get ∥∂(ȷ, γ)∥ = 0.
Hence, we get ȷ = γ.
Thus ȷ is the one and only common invariant point of H,I,C,P,Q
and R.

Corollary 3.2. Suppose (Ω, ∂) be a complete Bicom-
plex valued metric space and H,C,P,Q,R be the self mappings
on Ω satisfies (i) H(Ω) ⊇ QR(Ω) and H(Ω) ⊇ CP (Ω) (ii)
∂(CPϖ,QRϑ) ⪯i2 τ1∂(Hϖ,Hϑ) + τ2∂(Hϖ,CPϖ) +
τ3∂(Hϑ,QRϑ) + τ4∂(Hϖ,QRϑ) for all ϖ,ϑ ∈ Ω,
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where τ1,τ2,τ3 and τ4 be nonnegative real number such that
τ1 + τ2 + τ3 + 2τ4 < 1. (iii) Suppose that (QR,H) and (CP,H)
be weakly compatible. (Q,R), (Q,H) (R,H),(C,P),(C,H) and
(P,H) are pairs of commuting maps. Then Q,R,C,P and H have
a unique common invariant point in Ω.
Proof: This results can be prove easily by substituting I = H in
the above theorem.

Theorem 3.3. Suppose (Ω, ∂) be a complete Bicomplex
metric space and h,k:Ω× Ω → Ω be two functions satisfies
∂(h(ϖ, ȷ), k(ρ, σ)) ⪯i2 τ1

∂(ϖ,ρ)+∂(ȷ,σ)
2

+ τ2
∂(ϖ,h(ϖ,ȷ))+∂(ρ,ϖ)

2 + τ3
∂(ϖ,h(ϖ,ȷ))+∂(ρ,k(ρ,σ))

2
where ϖ, ȷ, ρ, σ ∈ Ω and τ1, τ2 and τ3 are nonnegative integers
such that 1 > τ1 + τ2 + τ3. Then h and k contains one and
only common coupled invariant point in Ω× Ω.
Proof: Consider two arbitrary elements ϖ0, ȷ0 ∈ Ω.
We define two sequences {ϖn}, {ȷn} such that
ϖ2l+1 = h(ϖ2l, ȷ2l), ϖ2l+2 = k(ϖ2l+1, ȷ2l+1),
ȷ2l+1 = h(ȷ2l, ϖ2l), ȷ2l+2 = k(ȷ2l+1, ϖ2l+1), for l=0,1,2...
Now we consider,
∂(ϖ2l+1, ϖ2l+2) = ∂(h(ϖ2l, ȷ2l), k(ϖ2l+1, ȷ2l+1))

⪯i2 τ1
∂(ϖ2l,ϖ2l+1)+∂(ȷ2l,ȷ2l+1)

2

+ τ2
∂(ϖ2l,h(ϖ2l,ȷ2l))+∂(ϖ2l+1,ϖ2l)

2

+ τ3
∂(ϖ2l,h(ϖ2l,ȷ2l))+∂(ϖ2l+1,k(ϖ2l+1,ȷ2l+1))

2

= τ1
∂(ϖ2l,ϖ2l+1)+∂(ȷ2l,ȷ2l+1)

2 + τ2
∂(ϖ2l,ϖ2l+1)+∂(ϖ2l+1,ϖ2l)

2 +
τ3

∂(ϖ2l,ϖ2l+1)+∂(ϖ2l+1,ϖ2l+2)
2

= ( τ1+2τ2+τ3
2 )∂(ϖ2l, ϖ2l+1) + ( τ12 ) ∂(ȷ2l, ȷ2l+1)

+ ( τ32 )∂(ϖ2l+1, ϖ2l+2)
i.e.,
(2 − τ3)∂(ϖ2l+1, ϖ2l+2) ⪯i2 (τ1 + 2τ2 + τ3)∂(ϖ2l, ϖ2l+1)
+ (τ1) ∂(ȷ2l, ȷ2l+1)–(3.1)
Again, we consider
∂(ȷ2l+1, ȷ2l+2) = ∂(h(ȷ2l, ϖ2l), k(ȷ2l+1, ϖ2l+1))

⪯i2 τ1
∂(ȷ

′
2l,ȷ2l+1)+∂(ϖ2l,ϖ2l+1)

2

+ τ2
∂(ȷ2l,h(ȷ2l,ϖ2l))+∂(ȷ2l+1,ȷ2l)

2

+ τ3
∂(ȷ2l,h(ȷ2l,ϖ2l)+∂(ȷ2l+1,k(ȷ2l+1,ϖ2l+1))

2

= τ1
∂(ȷ2l,ȷ2l+1)+∂(ϖ2l,ϖ2l+1)

2 + τ2
∂(ȷ2l,ȷ2l+1)+∂(ȷ2l+1,ȷ2l)

2

+ τ3
∂(ȷ2l,ȷ2l+1)+∂(ȷ2l+1,ȷ2l+2)

2

= ( τ1+2τ2+τ3
2 )∂(ȷ2l, ȷ2l+1) + ( τ12 ) ∂(ϖ2l, ϖ2l+1)

+ ( τ32 )∂(ȷ2l+1, ȷ2l+2)
i.e.,
(2− τ3)∂(ȷ2l+1, ȷ2l+2) ⪯i2 (τ1 + 2τ2 + τ3)∂(ȷ2l, ȷ2l+1)
+ (τ1) ∂(ϖ2l, ϖ2l+1) –(3.2)
By adding the equations (3.1) and (3.2) we get
∂(ϖ2l+1, ϖ2l+2) +∂(ȷ2l+1, ȷ2l+2) ⪯i2 η[∂(ϖ2l, ϖ2l+1)
+∂(ȷ2l, ȷ2l+1)]
where η = 2τ1+2τ2+τ3

2−τ3
and 0 ≤ η < 1, Since 1 > τ1 + τ2 + τ3.

Similarly, we can easily show that
∂(ϖ2l+2, ϖ2l+3) +∂(ȷ2l+2, ȷ2l+3) ⪯i2 η[∂(ϖ2l+1, ϖ2l+2)
+∂(ȷ2l+1, ȷ2l+2)]
Then, for any l ∈ N, we get
∂(ϖl+2, ϖl+1) +∂(ȷl+2, ȷl+1) ⪯i2 η[∂(ϖl+1, ϖl)
+∂(ȷl+1, ȷl)]
⪯i2 η2[∂(ϖl, ϖl−1) +∂(ȷl, ȷl−1)]
.........

⪯i2 ηl+1[∂(ϖ1, ϖ0) +∂(ȷ1, ȷ0)]
Now, we consider m, l ∈ N and m >l , we get
∂(ϖm, ϖl) + ∂(ȷm, ȷl) ⪯i2 [∂(ϖl, ϖl+1)+ ∂(ȷl, ȷl+1)]
+ [∂(ϖl+1, ϖm) + ∂(ȷl+1, ȷm)]
⪯i2 [∂(ϖl, ϖl+1)+∂(ȷl, ȷl+1)]+ [∂(ϖl+1, ϖl+2)
+ ∂(ȷl+1, ȷl+2)] + .........+ [∂(ϖm−1, ϖm) + ∂(ȷm−1, ȷm)]
⪯i2 [ηl + ηl+1 + ηl+2 + ....+ ηm−1][∂(ϖ1, ϖ0) + ∂(ȷ1, ȷ0)]

⪯i2 ( ηl

1−η ) [∂(ϖ1, ϖ0) + ∂(ȷ1, ȷ0)]

Since 0 ≤ η <1, Then ∂(ϖm, ϖl) → 0 & ∂(ȷm, ȷl) → 0, as
l,m →∞.
Hence {ϖn} and {ȷn} be two cauchy sequences in X and
there exists ϖ, ȷ ∈ X such that (ϖn) → ϖ and (ȷn) → ȷ as
n→∞.
Now we consider
∂(h(ϖ, ȷ), ϖ) ⪯i2 ∂(h(ϖ, ȷ), ϖ2l+2) + ∂(ϖ2l+2, ϖ)
= ∂(h(ϖ, ȷ), k(ϖ2l+1, s2l+1) + ∂(ϖ2l+2, ϖ)

⪯i2 τ1
∂(ϖ,ϖ2l+1)+∂(ȷ,ȷ2l+1)

2 + τ2
∂(ϖ,h(ϖ,ȷ))+∂(ϖ2l+1,ϖ)

2

+ τ3
∂(ϖ,h(ϖ,ȷ))+∂(ϖ2l+1,k(ϖ2l+1,ȷ2l+1))

2 +∂(ϖ2l+2, ϖ)

= τ1
∂(ϖ,ϖ2l+1)+∂(ȷ,ȷ2l+1)

2 + τ2
∂(ϖ,h(ϖ,ȷ))+∂(ϖ2l+1,ϖ)

2

+ τ3
∂(ϖ,h(ϖ,ȷ))+∂(ϖ2l+1,ϖ2l+2)

2 +∂(ϖ2l+2, ϖ)
Letting the limit as l →∞, then we get
∥∂(h(ϖ, ȷ), ϖ)∥ ≤ ( τ2+τ3

2 )∥∂(h(ϖ, ȷ), ϖ)∥
which is a contradiction, since τ1 + τ2 + τ3 < 1.
Therefore, we get ∥∂(h(ϖ, ȷ), ϖ)∥ = 0.
Hence, h(ϖ, ȷ) = ϖ. Similarly it can easily show that
h(ȷ,ϖ) = ȷ.
Now we consider,
∂(ϖ, k(ϖ, ȷ)) = ∂(h(ϖ, ȷ), k(ϖ, ȷ))

⪯i2 τ1
∂(ϖ,ϖ)+d(ȷ,ȷ)

2 + τ2
∂(ϖ,h(ϖ,ȷ))+∂(ϖ,ϖ)

2

+ τ3
∂(ϖ,h(ϖ,ȷ))+∂(ϖ,k(ϖ,ȷ))

2
i.e., ∂(ϖ, k(ϖ, ȷ)) ⪯i2

τ3
2 ∂(ϖ, k(ϖ, ȷ))

i.e., ∥∂(ϖ, k(ϖ, ȷ))∥ ≤ τ3
2 ∥∂(ϖ, k(ϖ, ȷ))∥

i.e., (1− τ3
2 ) ∥∂(ϖ, k(ϖ, ȷ))∥ ≤ 0.

Since 1 > τ1 + τ2 + τ3.
Therefore, we get ∥∂(ϖ, k(ϖ, ȷ))∥ = 0. Hence k(ϖ, ȷ) = ϖ
Similarly, we can easily show that k(ȷ,ϖ) = ϖ.
Thus, (ϖ, ȷ) is a common coupled invariant point of h and k.
Now we prove (ϖ, ȷ) is unique.
Let (ℓ, υ) be any other common coupled invariant point of h
and k. Then h(ℓ, υ) = k(ℓ, υ) = ℓ and h(υ, ℓ) = k(υ, ℓ) = υ.
Now we consider,
∂(ϖ, ℓ) = ∂(h(ϖ, ȷ), k(ℓ, υ))

⪯i2 τ1
∂(ϖ,ℓ)+∂(ȷ,υ)

2 + τ2
∂(ϖ,h(ϖ,ȷ))+∂(ℓ,ϖ)

2

+ τ3
∂(ϖ,h(ϖ,ȷ))+∂(ℓ,k(ℓ,υ))

2

= τ1
∂(ϖ,ℓ)+∂(ȷ,υ)

2 + τ2
∂(ϖ,ϖ)+∂(ℓ,ϖ)

2 + τ3
∂(ϖ,ϖ)+∂(ℓ,ℓ)

2
= ( τ1+τ2

2 )∂(ϖ, ℓ) + τ1
2 ∂(ȷ, υ) —(3.3)

Similarly, we can show that
∂(ȷ, υ) ⪯i2 ( τ1+τ2

2 )∂(ȷ, υ)+ τ1
2 ∂(ϖ, ℓ) —(3.4)

By adding the equations (3.3) and (3.4), we get
∂(ϖ, ℓ) + ∂(ȷ, υ) ⪯i2 ( 2τ1+τ2

2 )[∂(ϖ, ℓ) + ∂(ȷ, υ)]

i.e., (1− 2τ1+τ2
2 )[∂(ϖ, ℓ) + ∂(ȷ, υ)] ⪯i2 0.

Since 1 > τ1 + τ2 + τ3,
Therefore, we get ∥∂(ϖ, ℓ) + ∂(ȷ, υ)∥ ≤ 0.
Then we get ∂(ϖ, ℓ) + ∂(ȷ, υ) = 0.
Hence, ϖ = ℓ and ȷ = υ. i.e., (ϖ, ȷ) = (ℓ, υ).
Hence (ϖ, ȷ) is the one and only one common coupled
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invariant point of h and k.
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Abstract 

In this paper, we establish some fixed point and common fixed-point theorems in bS -metric 

spaces using implicit relation. The results presented in this paper extend and generalize several 

results from the existing literature. 

1. Introduction 

In 1906, Maurice Fréchet [4] introduced the concept of metric spaces. 

Later, in the year 1922, Stefan Banach [2] proved a very famous theorem 

called “Banach Fixed Point Theorem”. In 2006, Z. Mustafa and B. Sims [5] 

introduced G-metric spaces. In 2012, Sedghi, Shobe and Aliouche [11] 

introduced S-metric spaces and they claimed that S-metric spaces are the 

generalization of G-metric spaces. But, later Dung, Hieu and Radojevic [3] 

have given examples that S-metric spaces are not the generalization of G-

metric spaces or vice versa. Therefore, the collection of G-metric spaces and 

S-metric spaces are different. In 1989, I. A. Bakhtin [1] introduced b-metric 

spaces as a generalization of metric spaces. In 2016, N. Souayah, N. Mlaiki 

[12] introduced bS -metric spaces as the generalizations of b-metric spaces 

and S-metric spaces. But, very recently Tas and Ozur [6] studied some 

relations between bS -metric spaces and some other metric spaces. S. Sedghi 

and N. V. Dung [9] introduced an implicit relation to investigate some fixed-



D. VENKATESH and V. NAGA RAJU 

Advances and Applications in Mathematical Sciences, Volume 22, Issue 4, February 2023 

884 

point theorems on S-metric spaces. In 2015, Prudhvi [7] proved some fixed-

point theorems on S-metric spaces, which extends the results of Sedgi and 

Dung [9].   

Inspired by G. S. Saluja [8], Prudhvi [7], S. Sedghi, N. V. Dung [9] and 

some others, we establish some fixed point and common fixed-point theorems 

in bS -metric spaces satisfying an implicit relation. 

2. Preliminaries 

Definition 2.1[11]. Let  be a nonempty set. An S-metric on  is a 

function  )→ ,0: 3S  that satisfies the following conditions, for each 

,,,,  aw   

(S1) ( ) 0,,  wS  for all  w,,  with .w  

(S2) ( ) 0,, = wS  if .w==  

(S3) ( ) ( ) ( ) ( ) .,,,,,,,, awwSaSaSwS ++   

The pair ( )S,  is called S-metric space. 

Example 2.1[3]. Let ,R=  the set of all real numbers and let 

( ) .,,2,, −+−+= wwwwS  Then ( )S,  is an S-metric 

space. 

Definition 2.2[1]. Let  be a nonempty set. A b-metric on  is a function 

 )→ ,0: 2d  if there exists a real number 1s  such that the following 

conditions holds for all ,   

(i) ( ) .0, ==d  

(ii) ( ) ( )= ,, dd  

(iii) ( ) ( ) ( ) + ,,, wdwdsd   

The pair ( )d,  is called a b-metric space. 

Definition 2.3[12]. Let  be a nonempty set and let 1s  be a given 

number. 
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A function  )→ ,0: 3
bS  is said to be bS -metric if and only if for all 

,,,,  aw  the following conditions hold: 

(i) ( ) 0,, = wSb  if .w==  

(ii) ( )  ( ) ( ) ( ),,,,,,,,, awwSaSaSswS bbbb ++   

The pair ( )bS,  is called an bS -metric space. 

Remark 2.1. We note that every S-metric space is an bS -metric space 

with ,1=s  but the converse statement is not true. 

Example 2.2[6]. Let ,R=  the set of all real numbers and let 

( ) ( ) ,
16

1
,, 2wwwSb −+−+−=  for all .,,  w   

Then ( )bS,  is an bS -metric space with ,4=s  but it is not an S-metric 

space. Indeed, for 8,6,4 === w  and ,5=a  we get 

( ) ( ) ( ) ( ).5,8,85,6,65,4,448,6,4 bbbb SSSS ++=  

Thus, bS -metric spaces are more general than S-metric spaces. 

Definition 2.4[6]. A bS -metric bS  is said to be symmetric if 

( ) ( ) .,,,,, = bb SS  

Lemma 2.1[10]. In bS -metric space, we have 

(i) ( ) ( ) ,,,, bb sSS  and ( ) ( ) ,,,, bb sSS   

(ii) ( ) ( ) ( ).,,,,2,, 2 wSssSwS bbb +   

Definition 2.5[12]. If ( )bS,  is an bS -metric space and a sequence  n  

in . Then 

(i)  n  is called a bS -Cauchy sequence, if to each Nn  0,0  such 

that ( ) .,,,, 0nmnS mnnb    

(ii)   →n  to each Nn  0,0  such that ( )  ,, nnbS  and 

( ) ,,, 0nnS nb    and we write as .lim =→ nn   
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Definition 2.6[12]. We say that ( )bS,  is complete if every bS -Cauchy 

sequence is bS -Convergent in . 

Tas and Ozgur [6] proved the following theorems in bS -metric spaces. 

Theorem 2.1[6]. If ( )bS,  is a complete bS -metric space with 1s  and 

T is a self map on  satisfying  

( ) ( ) ,,,,,,,  bb cSTTTS  where .
1

0
2s

c   

Then T has a unique fixed point  in . 

Example 2.3[10]. Let ( )S,  be a S-metric space and ( )wS ,,   

( )  ,,, qwS =  where 1q  is a real number. 

Note that S  is a bS -metric with 
( ).2 12 −= qs  Obvisously, S  satisfies 

conditions 

(i) ( ),,,0 wS    for all  w,,  with .w   

(ii) ( ) 0,, = wS  if .w==   

If ,1  q  then the convexity of the function ( ) ( )0, = qf  implies 

that ( ) ( ).2 1 qqqq baba ++ −  

Thus, for each ,,,,  aw  we obtain, 

( ) ( )qwSwS ,,,, =  

( ) ( )  ( )( )qawwSaSaS ,,,,,, ++  

( ( ) ( )  ( ) )qqq awwSaSaS ,,,,,,2 1 ++ −  

( ( ( ) ( ) ) ( ) )qqqqq awwSaSaS ,,2,,,,22 1112 −−− ++  

( )( ( ) ( ) ( ) ).,,,,,,2 12 qqqq awwSaSaS ++ −  

( )( ( ) ( ) ( )).,,,,,,2 12 awwSaSaSq


− ++  
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So, S  is a bS -metric with ( ).2 12 −= qs   

Now, we introduce an implicit relation to prove some fixed point and 

common fixed-point theorems in bS -metric spaces.  

Definition 2.7 (Implicit Relation). Let  be the family of all real 

valued continuous functions ++ → RR5:  non-decreasing in the first 

argument for five variables. For some ,
1

,0
2 








s
q  where ,1s  we consider 

the following conditions. 

(R1) For ,, + R  if ( )+ ssss ,,,,  then . q  

(R2) For ,, + R  if ( )0,0,,0,0    then .0=  

(R3) For ,+ R  if 






 


2
,0,0,0,  then .0=  

3. Main Results 

In this section, we shall prove some fixed point and common fixed-point 

theorems satisfying an implicit relation in bS -metric spaces. 

Theorem 3.1. Let T be a self map on a complete bS -metric space ( )bS,  

with 1s  and  

( ) ( ( ) ( ) ( ) ( ),,,,,,,,,,,,,,  TSTwwwSTSwSTwTTS bbbbb   

 ( ) ( ))+ TwwSTS
s bb ,,,,

2

1
 (1) 

for all  w,,  and .  If  satisfies the conditions (R1), (R2) and 

(R3), then T has a unique fixed point in . 

Proof. Let 0  be arbitrary and define a sequence  n  in  such 

that ,1 nn T= +  for any .Nn   If for some ., 1 nnNn = +  Then, 

.nn T=  Hence, T has a fixed point. Now, we may assume that ,1 nn  +  

for all .Nn   It follows from inequality (1) and Lemma 2.1, we consider 
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( ) ( )111 ,,,, −++ = nnnbnnnb TTTSS  

( ( ) ( ) ( ),,,,,,,,, 1111 −−−−  nnnbnnnbnnnb TSTSS  

( )  ( ) ( ))111 ,,,,
2

1
,,, −− + nnnbnnnbnnnb TSTS

s
TS  

( ( ) ( ) ( ),,,,,,,,, 1111 nnnbnnnbnnnb SSS = −−+−  

( )  ( ) ( ))nnnbnnnbnnnb SS
s

S  −−++ ,,,,
2

1
,,, 1111  

( ( ) ( ) ( ),,,,,,,,, 1111 −++−  nnnbnnnbnnnb sSsSS  

( )  ( )nnnbnnnb sS
s

sS  ++++ ,,
2

1
,,, 1111  

( ) ( ))nnnbnnnb sSsS ++ ++−− ,,,,2 1111  

( ( ) ( ) ( ),,,,,,,,, 1111 −++−  nnnbnnnbnnnb sSsSS  

( )  ( ) ( ))1
2

1111 ,,2,,2
2

1
,,, −++++ + nnnbnnnbnnnb SssS

s
sS  

( ( ) ( ) ( ),,,,,,,,, 1111 −++−  nnnbnnnbnnnb sSsSS  

( )  ( ) ( ))11111 ,,,,,,, −++++ + nnnbnnnbnnnb sSSsS  (2) 

Since   satisfies the condition (R1), there exists 









2

1
,0

s
q  such 

that  

( ) ( ) ( )011111 ,,,,,,  −++ b
n

nnnbnnnb SqqSS   (3) 

For Nmn ,  with ,mn   using Lemma 2.1 and equation (3), we have 

( ) ( ) ( )mnnbnnnbmnnb SssSS + +++ ,,,,2,, 11
2

1  

( )  ( ) ( )mnnbnnnbnnnb SsSssS ++ ++++++ ,,,,2,,2 22
2

211
2

1  

 ( )  ( )100
222 ,,12 +++ b

n Sqsqsaq   
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( )1002
,,

1

2












−
 b

n

S
qs

sq
 

Since 









2

1
,0

s
q  and .1s  Taking the limit as ,→n  we get 

( ) .0,, → mnnbS  This proves that the sequence  n  is a cauchy sequence 

in the complete bS -metric space ( )., bS  Then, there exists   such that 

.lim =→ nn  Now we prove that  is a fixed point of T. Again by using 

inequality (1), we obtain 

( ) ( )= TTTSTS nnbnnb ,,,,  

( ( ) ( ) ( ),,,,,,,,,  TSTSS bnnnbnnb  

( )  ( ) ( ))nbnnnbnnnb TSTS
s

TS + ,,,,
2

1
,,,  

( ( ) ( ) ( ),,,,,,,,, 1 = + TSSS bnnnbnnb  

( )  ( ) ( ))111 ,,,,
2

1
,,, +++ + nbnnnbnnnb SS

s
S  

Letting ,→n  we get 

( ) ( ( ) ( ) ( ),,,,,,,,,,,  TSSSTS bbbb   

( )  ( ) ( ))+ ,,,,
2

1
,,, bbb SS

s
S  

that is, ( ) ( ( ) )0,0,,,,0,0,,  TSTS bb   

Since   satisfies the condition (R2), then we get 

( ) ( ) TqSTS bb ,,,,  

that is, ( ) ( ) .0,,1 − TSq b  

Since .
1

0
2s

q   Therefore we get ( ) .0,, = TSb  Hence .=T   

Thus,  is a fixed point of T. Now, we show that fixed point of T is unique. 
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For this, let   be another fixed point of T. It follows from inequality (1) 

and Lemma 2.1, we get 

( ) ( ) = ,,,, TTSS bb  

( ( ) ( ) ( ),,,,,,,,,   TSTSS bbb  

( )  ( ) ( ))+  TSTS
s

TS bbb ,,,,
2

1
,,,  

( ( ) ( ) ( ),,,,,,,,,  = bbb SSS  

( )  ( ) ( ))+  ,,,,
2

1
,,, bbb SS

s
S  

( ( ) ( ))  ,,
2

1
,0,0,0,,, bb SS  

Since   satisfies the condition (R3), then we get 

( ) ( )  ,,,, bb qSS  

that is, ( ) ( ) .0,,1 − 
bSq  

Since .
1

0
2s

q   Therefore we get ( ) .0,, = 
bS  Hence .=  Thus 

the fixed point of T is unique. 

Theorem 3.2. Let 1T  and 2T  be two selfmaps on a complete bS -metric 

space ( )bS,  with 1s  and 

( ) ( ( ) ( ) ( ),,,,,,,,,,, 21211 wTwwSTSwSwTTTS bbbb    

( )  ( ) ( ))+ 111 ,,,,
2

1
,,, TwwSTS

s
TS bbb  (4) 

for all  w,,  and .  If  satisfies the conditions (R1), (R2) and 

(R3), then 1T  and 2T  have a unique fixed point in . 

Proof. Let X0  be arbitrary and a sequence  n  in X defined by 

nn T 2112 = +  and ,12222 ++ = nn T  for .,3,2,1,0 =n   
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It follows from inequality (4) and Lemma 2.1, we have 

( ) ( )122212121212 ,,,, −++ = nnnbnnnb TTTSS  

( ( ) ( ) ( ),,,,,,,,, 122121221221222 −−−−  nnnbnnnbnnnb TSTSS  

( )  ( ) ( ))nnnbnnnbnnnb TSTS
s

TS 21121221222122 ,,,,
2

1
,,, + −−  

( ( ) ( ) ( ),,,,,,,,, 2121212221222 nnnbnnnbnnnb SSS = −−+−  

( )  ( ) ( ))12121212221222 ,,,,
2

1
,,, +−−++ + nnnbnnnbnnnb SS

s
S  

( ( ) ( ) ( ),,,,,,,,, 1222212121222 −++−  nnnbnnnbnnnb sSsSS  

( )  ( )nnnbnnnb sS
s

sS 2121221212 ,,
2

1
,,,  ++++  

( ) ( ))nnnbnnnb sSsS 2121221212 ,,,,2 ++ ++−−  

( ( ) ( ),,,,,, 212121222 nnnbnnnb sSS  ++−  

( ) ( ),,,,,, 212121222 nnnbnnnb sSS  ++−  

 ( ) ( ))1222
2

21212 ,,2,,2
2

1
−++ + nnnbnnnb SssS

s
 (5) 

Since   satisfies the condition (R1), there exists 









2

1
,0

s
q  such 

that  

( ) ( ) ( )011
2

122221212 ,,,,,,  −++ b
n

nnnbnnnb SqqSS  (6) 

For Nmn ,  with ,mn   by using Lemma 2.1 and equation (6), we 

have  

( ) ( ) ( )mnnbnnnbmnnb SssSS + +++ ,,,,2,, 11
2

1  

( )  ( ) ( )mnnbnnnbnnnb SsSssS ++ ++++++ ,,,,2,,2 22
2

211
2

1  

 ( )  ( )100
222 ,,12 +++ b

n Sqsqssq   
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( ).,,
1

2
1002












−
 b

n

S
qs

sq
 

Since 









2

1
,0

s
q  and .1s  Taking the limit as ,→n  we get 

( ) .0,, → mnnbS  This proves that the sequence  n  is a cauchy sequence 

in the complete bS -metric space ( )., bS  Then, there exists   such that 

.lim =→ nn  Now we prove that  is a common fixed point of 1T  and .2T   

For this Consider, 

( ) ( )= ++ 1212111212 ,,,, TTTSTS nnbnnb  

( ( ) ( ) ( ),,,,,,,,, 1212222  TSTSS bnnnbnnb  

( )  ( ) ( ))nbnnnbnnnb TSTS
s

TS 2121222122 ,,,,
2

1
,,, +  

( ( ) ( ) ( ),,,,,,,,, 1122222  + TSSS bnnnbnnb  

( )  ( ) ( ))1212221222 ,,,,
2

1
,,, +++ + nbnnnbnnnb SS

s
S  (7) 

Letting ,→n  we get 

( ) ( ( ) ( ) ( ),,,,,,,,,,, 11  TSSSTS bbbb   

( )  ( ) ( ))+ ,,,,
2

1
,,, bbb SS

s
S  

that is, ( ) ( ( ) )0,0,,,,0,0,, 11  TSTS bb   

Since   satisfies the condition (R2), then we get 

( ) ( ) 11 ,,,, TqSTS bb  

that is, ( ) ( ) .0,,1 1 − TSq b  

Since .
1

0
2s

q   Therefore we get ( ) .0,, 1 = TSb  Hence .1 =T   

Similarly, we can show that .2 =T  This shows that  is a common 
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fixed point of 1T  and .2T  Now we prove that 1T  and 2T  have a unique 

common fixed point. For this, let   be another common fixed point of 1T  and 

.2T  It follows from equation (4) and Lemma 2.1, we have 

( ) ( ) = 211 ,,,, TTTSS bb  

( ( ) ( ) ( ),,,,,,,,, 21
  TSTSS bbb  

( )  ( ) ( ))+ 
211 ,,,,

2

1
,,, TSTS

s
TS bbb  

( ( ) ( ) ( ) = ,,,,,,,, bbb SSS  

( )  ( ) ( ))+  ,,,,
2

1
,,, bbb SS

s
S  

( ) ( ) .,,
2

1
,0,0,0,,, 







 = 
bb SS  

Since   satisfies the condition (R3), then we get 

( ) ( )  ,,,, bb qSS  

that is, ( ) ( )− ,,1 bSq   

Since .
1

1
2s

q   Therefore we get ( ) .0,, = 
bS  Hence .=  This 

shows that  is the unique common fixed point of 1T  and .2T  

Theorem 3.3. Let 1T  and 2T  be two continuous selfmaps on a complete 

Sbmetric space ( )bS,  with 1s  and 

( ) ( ( ) ( ) ( ),,,,,,,,,,, 21211 wTwwSTSwSwTTTS p
b

p
bb

ppp
b    

( )  ( ) ( ))+ p
b

p
b

p
b TwwSTS

s
TS 111 ,,,,

2

1
,,,  (8) 

for all ,,,  w  where p and q are integers and .  If  satisfies the 

conditions (R1), (R2) and (R3), then 1T  and 2T  have a unique fixed point in 

. 
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Proof. Since pT1  and pT2  satisfies the conditions of Theorem 3.2. Let  

be the common fixed point.  

Then, we have ( ) ( ) .1111111 === TTTTTTT ppp  

If ,01 =T  then .001 =pT  So, 1T  is a fixed point of .1
pT  

Similarly, ( ) ( ) .22222 == TTTTT qq  Now, using equation (8) and Lemma 

2.1, we obtain 

( ) ( ( ))= 11111 ,,,, TTTTSTS ppp
bb  

( ( ) ( ) ( ( )),,,,,,,,, 111111  TTTTSTSTS p
b

p
bb  

( )  ( ) ( ))+ p
b

p
b

p
b TTTSTS

s
TS 11111 ,,,,

2

1
,,,  

( ( ) ( ) ( ),,,,,,,,, 1111  TTTSSTS bbb  

( )  ( ) ( ))+ ,,,,
2

1
,,, 11 TTSS

s
S bbb  

( )  ( ) .,,
2

1
,0,0,0,,, 11 







  TSTS bb  

Since   satisfies the condition (R3), then we get 

( ) ( ) 11 ,,,, TkSTS bb  

that is, ( ) ( ) .0,,1 1 − TSk b   

Since 
2

1
0

s
k   and .1s  Therefore we get ( ) .0,, 1 = TSb  Hence 

.1 =T  Similarly, we can show that .2 =T  This shows that  is a 

common fixed point of 1T  and .2T  For uniqueness of , Let   be another 

common fixed point of 1T  and .2T  Then clearly   is also a common fixed 

point of pT1  and ,2
qT  which implies .=  Hence 1T  and 2T  have a unique 

common fixed point. 
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Theorem 3.4. Let  G  be a family of continuous selfmaps on a complete 

bS -metric space ( )bS,  with 1s  and 

( ) ( ( ) ( ) ( ),,,,,,,,,,, wGwwSGSwSwGGGS bbbb     

( )  ( ) ( ))+  GwwSGS
s

GS bbb ,,,,
2

1
,,,  (9) 

for all ,,,  w  and + R,  with .  Then there exists a unique 

  satisfying ,=G  for all .   

Proof. Let 0  be arbitrary and a sequence  n  in  defined by 

nn G 212 = +  and ,1222 ++ = nn G  for .,3,2,1,0 =n   

It follows from inequality (9) and Lemma 2.1, we have 

( ) ( )122221212 ,,,, −++ = nnnbnnnb GGGSS  

( ( ) ( ) ( )1212122221222 ,,,,,,,, −−−−  nnnbnnnbnnnb GSGSS  

( )  ( ) ( ))nnnbnnnbnnnb GSGS
s

GS 21212222222 ,,,,
2

1
,,, + −−  

( ( ) ( ) ( ),,,,,,,,, 2121212221222 nnnbnnnbnnnb SSS = −−+−  

( )  ( ) ( ))12121212221222 ,,,,
2

1
,,, +−−++ + nnnbnnnbnnnb SS

s
S  

( ( ) ( ) ( ),,,,,,,,, 1222212121222 −++−  nnnbnnnbnnnb sSsSS  

( )  ( )nnnbnnnb sS
s

sS 2121221212 ,,
2

1
,,,  ++++  

( ) ( ))nnnbnnnb sSsS 2121221212 ,,,,2 ++ ++−−  

( ( ) ( ) ( ),,,,,,,,, 1222212121222 −++−  nnnbnnnbnnnb sSsSS  

( )  ( ) ( ))1222
2

2121221212 ,,2,,2
2

1
,,, −++++ + nnnbnnnbnnnb SssS

s
sS (10) 

Since   satisfies the condition (R1), there exists 









2

1
,0

s
q  such 
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that  

( ) ( ) ( )011
2

122221212 ,,,,,,  −++ b
n

nnnbnnnb SqqSS   (11) 

For Nmn ,  with ,mn   by using Lemma 2.1 and equation (11), we 

have 

( ) ( ) ( )mnnbnnnbmnnb SssSS + +++ ,,,,2,, 11
2

1  

( )  ( ) ( )mnnbnnnbnnnb SsSssS ++ ++++++ ,,,,2,,2 22
2

211
2

1  

 ( )  ( )100
222 ,,12 +++ b

n Sqsqssq   

( ).,,
1

2
1002












−
 b

n

S
qs

sq
 

Since 









2

1
,0

s
q  and .1s  Taking the limit as ,→n  we get 

( ) .0,, → mnnbS  This proves that the sequence  n  is a cauchy sequence 

in the complete bS -metric space ( )., bS  Then, there exists   such that 

.lim =→ nn  By the continuity of G  and ,G  it is clear that 

.==  GG  Therefore  is a common fixed point of G  and ,G  for all 

.  In order to prove the uniqueness, let us take another common fixed 

point   of G  and ,G  where .  Then using equation (9) and Lemma 

2.1, we obtain 

( ) ( )
 = GGGSS bb ,,,,  

( ( ) ( ) ( ),,,,,,,,, 





  GSGSS bbb  

( )  ( ) ( ))+ 


 GSGS
s

GS bbb ,,,,
2

1
,,,  

( ( ) ( ) ( ),,,,,,,,,   bbb SSS  

( )  ( ) ( ))+  ,,,,
2

1
,,, bbb SS

s
S  
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( ) ( ) .,,
2

1
,0,0,0,,, 







  
bb SS  

Since   satisfies the condition (R3), then we get 

( ) ( )  ,,,, bb qSS  

that is, ( ) ( ) .0,,1 − 
bSq  

Since .
1

0
2s

q   Therefore we get ( ) .0,, = 
bS  Hence .=  This 

shows that  is the unique common fixed point of ,G  for all .   

Corollary 3.1. Let ( )bS,  be a complete bS -metric space. Suppose that 

the mapping →:T  satisfies ( ) ( )wSTwTTS bb ,,,,   for all 

,,,  w  where  )1,0  is a constant. Then T has a unique fixed point in 

. Moreover, T is continuous at the fixed point. 

Proof. We can prove easily by using Theorem 3.1. with 

( ) ,,,,, aedcba =  for some  )1,0  and .,,,, + Redcba   

Corollary 3.2. Let ( )bS,  be a complete bS -metric space. Suppose that 

the mappings →:, 21 TT  satisfies ( ) ( )wSwTTTS bb ,,,,, 211   for 

all ,,,   where  )1,0  is a constant. Then 1T  and 2T  have a unique 

fixed point in . 

Proof. We can prove easiy by using Theorem 3.2. with 

( ) ,,,,, aedcba =  for some  )1,0  and .,,,, + Redcba  

Example 3.1. Let ( )bS,  be a complete bS -metric space with .4=s  

Where  1,0=  and ( ) ( ) .,, 2wwwSb −+−=   

Now, we consider the mapping →:T  defined by ( ) ,
5


=T  for all 

 .1,0  Then ( ) ( )2,, TwTTwTTwTTSb −+−=  

2

5555







 −


+−


=
ww
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( )2
25

1
ww −+−=  

( )wSb ,,
25

1
  

( ).,, wSb =  

where .1
25

1
=  Thus T satisfies all the conditions of corollary 3.1. and 

clearly 0  is the unique fixed point of T. 

4. Conclusion 

From this results, we can study the fixed-circle problem [13] using new 

contrations on different generalized metric spaces. 
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1 Introduction
Fixed point technique is considered as one of the powerful tools to solve sev-

eral problems occur in several fields like Computer science, Economics, Mathe-
matics and its allied subjects. In the year 1906, M.Frechet [7] introduced metric
spaces. Later, in the year 1922, Stefan Banach [4] proved a very famous theo-
rem called ”Banach Fixed Point Theorem”. This theorem has been generalized
in many directions by generalizing the underlying space or by viewing it as a
common fixed point theorem along with other self maps. In the past few years, a
number of generalizations of metric spaces like G -metric spaces, partial metric
spaces and cone metric spaces were initiated. These generalizations are used to
extend the scope of the study of fixed point theory. In 2012, Sedghi, Shobe and
Aliouche [13] introduced S-metric spaces and studied some properties of these
spaces. We observe that, every G-metric space need not be a S-metric space and
vice-versa. For details, see Examples 2.1 and 2.2 in [5]. Generally, in proving
fixed point results for a single self map, we utilize completeness and a contractive
condition.
Nowadays, the study of fixed point theorems for self maps satisfying different con-
traction conditions is the center of rigorous research activities. In this direction,
Dutta et al. [6] introduced (ψ, ϕ)-weakly contractive maps in 2008 and obtained
some fixed point results for such contractions. Later, G.V.R. Babu et al. [1] intro-
duced (ψ, ϕ)-almost weakly contractive maps in G-metric spaces in 2014. Fixed
points of contractive maps on S-metric spaces were studied by several authors [2],
[3] and [11]. Since then, several contractions have been considered for proving
fixed point theorems.
The main purpose of this paper is to define an (ψ, ϕ)- generalized almost weakly
contractive map in S-metric spaces and prove an existence and uniqueness of fixed
point of such maps. Furthermore we deduce some results as corollaries to our re-
sult and provide an example to validate our result.

2 Preliminaries
Definition 2.1. [8] A function ψ : [0,∞) → [0,∞) is said to be an altering
distance function if it satisfies
(i) ψ is continuous and non decreasing and
(ii) ψ(t) = 0 if and only if t = 0.
We denote the class of all altering distance functions by Ψ.
We denote Φ = {ϕ : [0,∞) → [0,∞) : (i) ϕ is continuous and (ii) ϕ(t)=0 if and
only if t=0}.

In the following, Dutta and Choudhury [6] established the fixed points of (ψ, ϕ)-
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weakly contractive maps in complete metric spaces.

Theorem 2.1. [6] Let (X,d) be a complete metric space and let h:X→X be a self-
maps of X. If there exist ψ, ϕ ∈ Ψ such that

ψ(d(hξ, hϑ)) ≤ ψ(d(ξ, ϑ))− ϕ(d(ξ, ϑ)) for all ξ, ϑ ∈ X.

Then h has a unique fixed point.

Definition 2.2. [10] Let X be a non-empty set, G:X3 → [0,∞) be a function
satisfying the following properties:
(i) G(ξ, ϑ, w) = 0 if ξ = ϑ = w,
(ii) G(ξ, ξ, ϑ) > 0 for all ξ, ϑ ∈X with ξ ̸= ϑ,
(iii) G(ξ, ξ, ϑ) ≤ G(ξ, ϑ, w) for all ξ, ϑ, w ∈X,
(iv) G(ξ, ϑ, w) = G(ξ, w, ϑ) = G(w, ξ, ϑ) =...(symmetriy in all three variables),
(v) G(ξ, ϑ, w) ≤ G(ξ, a, a) +G(a, ϑ, w) for all ξ, ϑ, w, a ∈X.
Then the function G is called a generalized metric(G-metric) and the pair (X,G)
is called a G-metric space.

Definition 2.3. [14] Let (X,G) be a G-metric space. A self mapping h of X is said
to be weakly contractive if for all ξ, ϑ, w ∈ X

G(hξ, hϑ, hw) ≤ G(ξ, ϑ, w)− ψ(G(ξ, ϑ, w))

where ψ is an altering distance function.

In 2012, Khandaqji, Al-Sharif and Al-Khaleel [9] proved the following for weakly
contractive maps in G-metric spaces.

Theorem 2.2. [9] Let (X,G) be a complete G-metric space and h:X→X be a self
map. If there exist ψ ∈ Ψ and ϕ ∈ Φ such that

ψ(G(hξ, hϑ, hw)) ≤ ψ(max{G(ξ, ϑ, w), G(ξ, hξ, hξ), G(ϑ, hϑ, hϑ), G(w, hw, hw),
αG(hξ, hξ, ϑ) + (1− α)G(hϑ, hϑ, w), βG(ξ, hξ, hξ)

+ (1− β)G(ϑ, hϑ, hϑ)})− ϕ(max{G(ξ, ϑ, w), G(ξ, hξ, hξ),
G(ϑ, hϑ, hϑ), G(w, hw, hw), αG(hξ, hξ, ϑ)

+ (1− α)G(hϑ, hϑ, w), βG(ξ, hξ, hξ) + (1− β)G(ϑ, hϑ, hϑ)}) (1)

for all ξ, ϑ, w ∈X,where α, β ∈ (0, 1). Then h has a unique fixed point u(say) and
h is G-continuous at u.

Definition 2.4. [13] Let a nonempty set X, then we say that a function S:X3 →
[0,∞) is S-metric on X if:
(S1) S(ξ, ϑ, w) > 0 for all ξ, ϑ, w ∈X with ξ ̸= ϑ ̸= w,
(S2)S(ξ, ϑ, w) = 0 if ξ = ϑ = w,
(S3) S(ξ, ϑ, w) ≤ [S(ξ, ξ, a) + S(ϑ, ϑ, a) + S(w,w, a)].
for all ξ, ϑ, w, a ∈X. Then (X,S) is called an S-metric space.
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Example 2.1. [13] Let (X,d) be a metric space. Define S:X3 → [0,∞) by
S(ξ, ϑ, w) = d(ξ, ϑ) + d(ξ, w) + d(ϑ,w) for all ξ, ϑ, w ∈X. Then S is an S-metric
on X and S is called the S-metric induced by the metric d.

Example 2.2. [5] Let X=R, the set of all real numbers and let S(ξ, ϑ, w) = |ϑ +
w − 2ξ|+ |ϑ− w| for all ξ, ϑ, w ∈X. Then (X,S) is an S-metric space.

Example 2.3. [12] Let X=R, the set of all real numbers and let S(ξ, ϑ, w) =
|ξ − w|+ |ϑ− w| for all ξ, ϑ, w ∈X. Then (X,S) is an S-metric space.

Example 2.4. Let X=[0,1] and we define S:X3 → [0,∞) by

S(ξ, ϑ, w) =

{
0 if ξ = ϑ = w

max{ξ, ϑ, w} otherwise
.

Then S is an S-metric on X.

The following lemmas are useful in our main results.

Lemma 2.1. [13] In an S-metric space, we have S(ξ, ξ, ϑ) = S(ϑ, ϑ, ξ).

Lemma 2.2. [5] In an S-metric space, we have
(i) S(ξ, ξ, ϑ) ≤ 2S(ξ, ξ, w) + S(ϑ, ϑ, w) and
(ii) S(ξ, ξ, ϑ) ≤ 2S(ξ, ξ, w) + S(w,w, ϑ).

Definition 2.5. [13] Let (X,S) be an S-metric space. We define the following:
(i) a sequence {ξn} ∈X converges to a point ξ ∈X if S(ξn, ξn, ξ) → 0 as n → ∞.
That is, for each ϵ > 0, there exists n0 ∈ N such that for all n≥ n0, S(ξn, ξn, ξ) <
ϵ and we denote it by limn→∞ ξn = ξ.
(ii) a sequence {ξn} ∈X is called a Cauchy sequence if for each ϵ > 0, there exists
n0 ∈ N such that S(ξn, ξn, ξm) < ϵ for all n,m≥ n0.
(iii) (X,S) is said to be complete if each Cauchy sequence in X is convergent.

Definition 2.6. Let (X,S) and (Y,S’) be two S-metric spaces. Then a function
h:X→Y is S-continuous at a point ξ ∈X if it is S-sequentially continuous at ξ,
that is, whenever {ξn} is S-convergent to ξ, we have h(ξn) is S’-convergent to
h(ξ).

Lemma 2.3. [13] Let (X,S) be an S-metric space. If the sequences {ξn} in X
converges to ξ, then ξ is unique.

Lemma 2.4. [13] Let (X,S) be an S-metric space. If there exist sequences {ξn}
and {ϑn} in X such that limn→∞ ξn = ξ and limn→∞ ϑn = ϑ, then
limn→∞ S(ξn, ξn, ϑn) = S(ξ, ξ, ϑ).
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Definition 2.7. [13] Let (X,S) be an S-metric space. A map h:X→X is said to be
an S-contraction if there exists a constant 0 ≤ λ < 1 such that

S(h(ξ), h(ξ), h(ϑ)) ≤ λS(ξ, ξ, ϑ) for all ξ, ϑ ∈ X.

We now introduce the following definition and support it with a subsequent ex-
ample.

Definition 2.8. Let (X,S) be an S-metric space. A map h:X → X is called (ψ, ϕ)
-generalized almost weakly contractive if it satisfies the inequality

ψ(S(hξ, hϑ, hw)) ≤ ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w)) + L.θ(ξ, ϑ, w) (2)

for all ξ, ϑ, w ∈ X, ψ ∈ Ψ, ϕ ∈ Φ and L ≥ 0, where
M(ξ, ϑ, w) = max{S(ξ, ϑ, w), S(ξ, ξ, hξ), S(ϑ, ϑ, hϑ), 1

2
[S(ξ, ξ, hϑ)+S(ϑ, ϑ, hξ)]},

θ(ξ, ϑ, w) = min{S(ξ, ξ, hξ), S(ϑ, ϑ, hϑ), S(w,w, hξ), S(ξ, ξ, hw)}.

Example 2.5. Let X = [0,8
7
] and we define h : X → X by

hξ =

{
ξ
10

if ξ ∈ [0, 1]

ξ − 4
5

if ξ ∈ (1, 8
7
]

.

We define S: X3 → [0,∞) by S(ξ, ϑ, w) = |ξ − w| + |ϑ− w| for all ξ, ϑ, w ∈ X.
Then (X,S) is a complete S-metric space.
We now define functions ψ, ϕ : [0,∞) → [0,∞) by

ψ(t) = t, for all t≥ 0 and ϕ(t) =

{
t
2

if t ∈ [0, 1]
t

t+1
if t ≥ 1.

.

We now show that h satisfies the inequality (2).
Case(i): Let ξ, ϑ, w ∈ [0,1].
Without loss of generality, we assume that ξ > ϑ > w.
S(hξ, hϑ, hw) = S( ξ

10
, ϑ
10
, w
10
) = 1

10
(|ξ − w|+ |ϑ− w|) and

S(ξ, ϑ, w) = |ξ − w|+ |ϑ− w|.
sub case (i): If |ξ − w|+ |ϑ− w| ∈ [0,1].
In this case,

S(hξ, hϑ, hw) =
1

10
(|ξ − w|+ |ϑ− w|) ≤ 1

2
(|ξ − w|+ |ϑ− w|)

=
1

2
S(ξ, ϑ, w) ≤ 1

2
M(ξ, ϑ, w)

=M(ξ, ϑ, w)− 1

2
M(ξ, ϑ, w)

= ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w)).
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Sub case(ii): If |ξ − ϑ|+ |ϑ− w| ≥1.
In this case,

S(hξ, hϑ, hw) =
1

10
(|ξ − ϑ|+ |ϑ− w|) ≤ |ξ − ϑ|+ |ϑ− w| − |ξ − ϑ|+ |ϑ− w|

1 + |ξ − ϑ|+ |ϑ− w|

= S(ξ, ϑ, w)− S(ξ, ϑ, w)

1 + S(ξ, ϑ, w)

=
(S(ξ, ϑ, w))2

1 + S(ξ, ϑ, w)
≤ (M(ξ, ϑ, w))2

1 +M(ξ, ϑ, w)

=M(ξ, ϑ, w)− M(ξ, ϑ, w)

1 +M(ξ, ϑ, w)

= ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w)).

Case(ii): Let ξ, ϑ, w ∈ (1, 8
7
].

Without loss of generality, we assume that ξ > ϑ > w.

S(hξ, hϑ, hw) = S(ξ − 4

5
, ϑ− 4

5
, w − 4

5
) = |ξ − w|+ |ϑ− w|

≤ 2

7
≤ 64

65
=

8

5
− 8

13
= S(ξ, ξ, hξ)− S(ξ, ξ, hξ)

1 + S(ξ, ξ, hξ)

=
(S(ξ, ξ, hξ))2

1 + S(ξ, ξ, hξ)
≤ (M(ξ, ϑ, w))2

1 +M(ξ, ϑ, w)

=M(ξ, ϑ, w)− M(ξ, ϑ, w)

1 +M(ξ, ϑ, w)

= ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w)).

Case(iii): Let ϑ,w ∈ [0,1] and ξ ∈ (1, 8
7
].

Without loss of generality, we assume that ϑ >w.

S(hξ, hϑ, hw) = S(ξ − 4

5
,
ϑ

10
,
w

10
) = |ξ − 4

5
− w

10
|+ | ϑ

10
− w

10
|

= ξ − w

10
− 4

5
+
ϑ− w

10
= ξ +

ϑ

10
− w

5
− 4

5

=
31

70
≤ 64

65
=

8

5
− 8

13
= S(ξ, ξ, hξ)− S(ξ, ξ, hξ)

1 + S(ξ, ξ, fξ)

=
(S(ξ, ξ, hξ))2

1 + S(ξ, ξ, hξ)
≤ (M(ξ, ϑ, w))2

1 +M(ξ, ϑ, w)

=M(ξ, ϑ, w)− M(ξ, ϑ, w)

1 +M(ξ, ϑ, w)

= ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w)).
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Case(iv): Let w∈ [0,1] and ξ, ϑ ∈ (1, 8
7
].

Without loss of generality, we assume that ξ > ϑ.

S(hξ, hϑ, hw) = S(ξ − 4

5
, ϑ− 4

5
,
w

10
) = |ξ − 4

5
− w

10
|+ |ϑ− 4

5
− w

10
|

= ξ + ϑ− w

5
− 8

5
=

12

35
≤ 64

65
=

8

5
− 8

13

= S(ϑ, ϑ, hϑ)− S(ϑ, ϑ, hϑ)

1 + S(ϑ, ϑ, hϑ)

=
(S(ϑ, ϑ, hϑ))2

1 + S(ϑ, ϑ, hϑ)
≤ (M(ξ, ϑ, w))2

1 +M(ξ, ϑ, w)

=M(ξ, ϑ, w)− M(ξ, ϑ, w)

1 +M(ξ, ϑ, w)

= ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w)).

Case (v): Let ξ, ϑ ∈ [0,1] and w ∈ (1, 8
7
].

Without loss of generality, we assume that ξ > ϑ.

S(hξ, hϑ, hw) = S(
ξ

10
,
ϑ

10
, w − 4

5
) = | ξ

10
− w +

4

5
|+ | ϑ

10
− w +

4

5
|

= |4
5
− (w − ξ

10
)|+ |4

5
− (w − ϑ

10
)| = w − ξ

10
− 4

5
+ w − ϑ

10
− 4

5

= 2w − ξ + ϑ

10
− 8

5
=

41

70
≤ 64

65
=

8

5
− 8

13

= S(ξ, ξ, hξ)− S(ξ, ξ, hξ)

1 + S(ξ, ξ, hξ)

=
(S(ξ, ξ, hξ))2

1 + S(ξ, ξ, hξ)
≤ (M(ξ, ϑ, w))2

1 +M(ξ, ϑ, w)

=M(ξ, ϑ, w)− M(ξ, ϑ, w)

1 +M(ξ, ϑ, w)

= ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w)).

Case (vi): Let ξ ∈ [0,1] and w, ϑ ∈ (1, 8
7
].

Without loss of generality, we assume that w > ϑ.

S(hξ, hϑ, hw) = S(
ξ

10
, ϑ− 4

5
, w − 4

5
) = | ξ

10
− w +

4

5
|+ |ϑ− w|

= w − ξ

10
− 4

5
+ w − ϑ = 2w − ξ

10
− 4

5
− ϑ
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≤ 27

70
≤ 64

65
=

8

5
− 8

13
= S(ϑ, ϑ, hϑ)− S(ϑ, ϑ, hϑ)

1 + S(ϑ, ϑ, hϑ)

=
(S(ϑ, ϑ, hϑ))2

1 + S(ϑ, ϑ, hϑ)
≤ (M(ξ, ϑ, w))2

1 +M(ξ, ϑ, w)

=M(ξ, ϑ, w)− M(ξ, ϑ, w)

1 +M(ξ, ϑ, w)

= ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w)).

From all the above cases, we conclude that h is an (ψ, ϕ)-generalized almost
weakly contraction map on X.

Lemma 2.5. [5] Let (X,S) be an S-metric space and {ξn} be a sequence in X
such that limn→∞ Sb(ξn, ξn, ξn+1) = 0. If {ξn} is not a Cauchy sequence, then
there exist an ϵ > 0 and two sequences {mk} and {nk} of natural numbers with
nk > mk > k such that S(ξmk

, ξmk
, ξnk

) ≥ ϵ, S(ξmk−1, ξmk−1, ξnk
) < ϵ and

(i)limk→∞ Sb(ξmk
, ξmk

, ξnk
) = ϵ. (ii) limk→∞ Sb(ξmk−1, ξmk−1, ξnk

) = ϵ.
(iii) limk→∞ Sb(ξmk

, ξmk
, ξnk−1) = ϵ. (iv) limk→∞ Sb(ξmk−1, ξmk−1, ξnk−1) = ϵ.

3 Main Results

Theorem 3.1. Let (X,S) be a complete S-metric space and h: X → X be a (ψ, ϕ)-
generalized almost weakly contractive mapping. Then h has a unique fixed point
in X.

Proof. Let ξ0 ∈ X be arbitrary. We define a sequence {ξn} by hξn = ξn+1, for n =
0,1,2,....
If ξn = ξn+1, for some n∈ N, then ξn is a fixed point of h.
Suppose ξn ̸= ξn+1, for all n∈ N.
Consider,

ψ(S(ξn+1, ξn+1, ξn)) = ψ(S(hξn, hξn, hξn−1))

≤ ψ(max{S(ξn, ξn, ξn−1), S(ξn, ξn, hξn), S(ξn, ξn, hξn),

1

2
[S(ξn, ξn, hξn) + S(ξn, ξn, hξn)]})

− ϕ(max{S(ξn, ξn, ξn−1), S(ξn, ξn, hξn), S(ξn, ξn, hξn),

1

2
[S(ξn, ξn, hξn) + S(ξn, ξn, hξn)]})

+ L.min{S(ξn, ξn, hξn), S(ξn, ξn, hξn), S(ξn−1, ξn−1, hξn), S(ξn, ξn, hξn−1)}
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= ψ(max{S(ξn, ξn, ξn−1), S(ξn, ξn, ξn+1), S(ξn, ξn, ξn+1),

1

2
[S(ξn, ξn, ξn+1) + S(ξn, ξn, ξn+1)]})

− ϕ(max{S(ξn, ξn, ξn−1), S(ξn, ξn, ξn+1), S(ξn, ξn, ξn+1),

1

2
[S(ξn, ξn, ξn+1) + S(ξn, ξn, ξn+1)]})

+ L.min{S(ξn, ξn, ξn+1), S(ξn, ξn, ξn+1), S(ξn−1, ξn−1, ξn+1), S(ξn, ξn, ξn)}
= ψ(max{S(ξn, ξn, ξn−1), S(ξn, ξn, ξn+1)})− ϕ(max{S(ξn, ξn, ξn−1),

S(ξn, ξn, ξn+1)}) + L.0

If max{S(ξn, ξn, ξn−1), S(ξn, ξn, ξn+1)} = S(ξn, ξn, ξn+1), then we get

ψ(S(ξn+1, ξn+1, ξn)) ≤ ψ(S(ξn+1, ξn+1, ξn))− ϕ(S(ξn+1, ξn+1, ξn))

that is, ϕ(S(ξn+1, ξn+1, ξn)) ≤ 0, which implies that S(ξn+1, ξn+1, ξn) = 0. Then
we get ξn+1 = ξn, which is a contradiction to our assumption that ξn ̸= ξn+1, for
each n.
Therefore, max{S(ξn, ξn, ξn−1), S(ξn, ξn, ξn+1)} = S(ξn, ξn, ξn−1),
then we get

ψ(S(ξn+1, ξn+1, ξn)) ≤ ψ(S(ξn, ξn, ξn−1))− ϕ(S(ξn, ξn, ξn−1)) (3)

that is ψ(S(ξn+1, ξn+1, ξn)) ≤ ψ(S(ξn, ξn, ξn−1))
Therefore we get, S(ξn+1, ξn+1, ξn) ≤ S(ξn, ξn, ξn−1), for all n and the sequence
{S(ξn+1, ξn+1, ξn)} is decreasing and bounded. So, there exists r ≥ 0 such that

lim
n→∞

S(ξn+1, ξn+1, ξn) = r.

Letting n →∞ in equation (3), we get

ψ(r) ≤ ψ(r)− ϕ(r),

which is a contradiction unless r = 0.
Hence,

lim
n→∞

S(ξn+1, ξn+1, ξn) = 0. (4)

Now we prove that {ξn} is a Cauchy sequence. If not, then there exists an ϵ > 0
for which we can find subsequences {ξm(k)} and {ξn(k)} of {ξn} and increasing
sequence of integers {m(k)} and {n(k)} such that n(k) is the smallest index for
which n(k) > m(k) > k,

S(ξm(k), ξm(k), ξn(k)) ≥ ϵ (5)
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Then, we have
S(ξm(k), ξm(k), ξn(k)−1) < ϵ (6)

Now,

ϵ ≤ S(ξm(k), ξm(k), ξn(k)) = S(ξn(k), ξn(k), ξm(k))

≤ 2S(ξn(k), ξn(k), ξn(k)−1) + S(ξm(k), ξm(k), ξn(k)−1)

≤ ϵ+ 2S(ξn(k), ξn(k), ξn(k)−1) (Using equation 6)

Letting k→ ∞, we get

lim
k→∞

S(ξm(k), ξm(k), ξn(k)) = ϵ. (7)

Also,

S(ξm(k), ξm(k), ξn(k)) ≤ 2S(ξm(k), ξm(k), ξm(k)−1) + S(ξn(k), ξn(k), ξm(k)−1)

≤ 2S(ξm(k), ξm(k), ξm(k)−1) + 2S(ξn(k), ξn(k), ξn(k)−1)

+ S(ξm(k)−1, ξm(k)−1, ξn(k)−1) (8)

and

S(ξm(k)−1, ξm(k)−1, ξn(k)−1) ≤ 2S(ξm(k)−1, ξm(k)−1, ξm(k))+S(ξn(k)−1, ξn(k)−1, ξm(k))

= 2S(ξm(k), ξm(k), ξm(k)−1) + S(ξm(k), ξm(k), ξn(k)−1) (9)

Letting k → ∞ in equation (9) and using equations (4), (6), (7) and (8)
we get

lim
k→∞

S(ξm(k)−1, ξm(k)−1, ξn(k)−1) = ϵ (10)

Setting ξ = ξm(k)−1, y = ξm(k)−1 and z = ξn(k)−1 in equation (2), we obtain

ψ(ϵ) ≤ ψ(S(ξm(k), ξm(k), ξn(k))) = ψ(S(hξm(k)−1, hξm(k)−1, hξn(k)−1))

≤ ψ(max{S(ξm(k)−1, ξm(k)−1, ξn(k)−1), S(ξm(k)−1, ξm(k)−1, hξm(k)−1),

S(ξm(k)−1, ξm(k)−1, hξm(k)−1),
1

2
[S(ξm(k)−1, ξm(k)−1, hξm(k)−1)

+ S(ξm(k)−1, ξm(k)−1, hξm(k)−1)]})
− ϕ(max{S(ξm(k)−1, ξm(k)−1, ξn(k)−1), S(ξm(k)−1, ξm(k)−1, hξm(k)−1),

S(ξm(k)−1, ξm(k)−1, hξm(k)−1),
1

2
[S(ξm(k)−1, ξm(k)−1, hξm(k)−1)

+ S(ξm(k)−1, ξm(k)−1, hξm(k)−1)]})
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+ L.min{S(ξm(k)−1, ξm(k)−1, hξm(k)−1), S(ξm(k)−1, ξm(k)−1, hξm(k)−1),

S(ξn(k)−1, ξn(k)−1, hξm(k)−1), S(ξm(k)−1, ξm(k)−1, hξn(k)−1)}
≤ ψ(max{S(ξm(k)−1, ξm(k)−1, ξn(k)−1), S(ξm(k)−1, ξm(k)−1, ξm(k)),

S(ξm(k)−1, ξm(k)−1, ξm(k)),
1

2
[S(ξm(k)−1, ξm(k)−1, ξm(k))

+ S(ξm(k)−1, ξm(k)−1, ξm(k))]})
− ϕ(max{S(ξm(k)−1, ξm(k)−1, ξn(k)−1), S(ξm(k)−1, ξm(k)−1, ξm(k)),

S(ξm(k)−1, ξm(k)−1, ξm(k)),
1

2
[S(ξm(k)−1, ξm(k)−1, ξm(k))

+ S(ξm(k)−1, ξm(k)−1, ξm(k))]})
+ L.min{S(ξm(k)−1, ξm(k)−1, ξm(k)), S(ξm(k)−1, ξm(k)−1, ξm(k)),

S(ξn(k)−1, ξn(k)−1, ξm(k)), S(ξm(k)−1, ξm(k)−1, ξn(k))}

Letting k → ∞ and using equation (10) we get

ψ(ϵ) ≤ ψ(max{ϵ, 0, 0, 0})− ϕ(max{ϵ, 0, 0, 0}) + L.min{0, 0, 0, ϵ}
ψ(ϵ) ≤ ψ(ϵ)− ϕ(ϵ) + L.0

This is a contradiction, since ϵ > 0. This shows that {ξn} is a Cauchy sequence
in the complete S-metric space (X,S). There exists κ ∈X such that {ξn} → κ as n
→ ∞.
Now we prove that hκ = κ.
Put ξ = ξn, ϑ = ξn and w = κ in equation (2), then we get

ψ(S(ξn+1, ξn+1, fκ)) = ψ(S(hξn, hξn, hκ))

≤ ψ(max{S(ξn, ξn, κ), S(ξn, ξn, hξn), S(ξn, ξn, hξn),
1

2
[S(ξn, ξn, hξn) + S(ξn, ξn, hξn)]})

− ϕ(max{S(ξn, ξn, κ), S(ξn, ξn, hξn), S(ξn, ξn, hξn),
1

2
[S(ξn, ξn, hξn) + S(ξn, ξn, hξn)]})

+ L.min{S(ξn, ξn, hξn), S(ξn, ξn, hξn), S(κ, κ, hξn), S(ξn, ξn, hκ)}

= ψ(max{S(ξn, ξn, κ), S(ξn, ξn, ξn+1), S(ξn, ξn, ξn+1),
1

2
[S(ξn, ξn, ξn+1)

+ S(ξn, ξn, ξn+1)]})− ϕ(max{S(ξn, ξn, κ), S(ξn, ξn, ξn+1),

S(ξn, ξn, ξn+1),
1

2
[S(ξn, ξn, ξn+1) + S(ξn, ξn, ξn+1)]})

+ L.min{S(ξn, ξn, ξn+1), S(ξn, ξn, ξn+1), S(κ, κ, ξn+1), S(ξn, ξn, hκ)}

Letting n → ∞, we get
ψ(S(κ, κ, hκ)) ≤ ψ(S(κ, κ, κ))− ϕ(S(κ, κ, κ)+L.0
ψ(S(κ, κ, hκ)) ≤ 0. So, we get S(κ, κ, hκ)=0.
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Hence hκ = κ. That is κ is a fixed point of h.
To prove the uniqueness of κ, let j be a fixed point of h with κ ̸=j.
Using equation (2),we consider

ψ(S(κ,κ, j)) = ψ(S(hκ, hκ, hj))

≤ ψ(max{S(κ, κ, j), S(κ, κ, hκ), S(κ, κ, hκ), 1
2
[S(κ, κ, hκ) + S(κ, κ, hκ)]})

− ϕ(max{S(κ, κ, j), S(κ, κ, hκ), S(κ, κ, hκ), 1
2
[S(κ, κ, hκ) + S(κ, κ, hκ)]})

+ L.min{S(κ, κ, hκ), S(κ, κ, hκ), S(j, j, hκ), S(κ, κ, hj)}
That is, ψ(S(κ, κ, j)) ≤ ψ(S(κ, κ, j))− ϕ(S(κ, κ, j))

is a contradiction, unless S(κ, κ, j) = 0. Hence we get κ = j.
This shows that the fixed point of h is unique. 2
If L=0 in the Theorem 3.1, then we get the following.

Corollary 3.1. Let (X,S) be a complete S-metric space and h:X→X be a mapping.
Suppose there exist ψ ∈ Ψ and ϕ ∈ Φ such that

S(hξ, hϑ, hw) ≤ ψ(max{S(ξ, ϑ, w), S(ξ, ξ, hξ), S(ϑ, ϑ, hϑ), 1
2
[S(ξ, ξ, hϑ)

+ S(ϑ, ϑ, hξ)]})− ϕ(max{S(ξ, ϑ, w), S(ξ, ξ, hξ), S(ϑ, ϑ, hϑ),
1

2
[S(ξ, ξ, hϑ) + S(ϑ, ϑ, hξ)]}),

for all ξ, ϑ, w ∈ X . Then h has a unique fixed point κ in X.

If ψ is the identity map in the above Corollary (3.1), then we get the following.

Corollary 3.2. Let (X,S) be a complete S-metric space and h:X→X be a mapping.
Suppose there exist ϕ ∈ Φ such that

S(hξ, hϑ,hw) ≤ max{S(ξ, ϑ, w), S(ξ, ξ, hξ), S(ϑ, ϑ, hϑ), 1
2
[S(ξ, ξ, hϑ) + S(ϑ, ϑ, hξ)]}

− ϕ(max{S(ξ, ϑ, w), S(ξ, ξ, hξ), S(ϑ, ϑ, hϑ), 1
2
[S(ξ, ξ, hϑ) + S(ϑ, ϑ, hξ)]})

for all ξ, ϑ, w ∈ X . Then h has a unique fixed point κ in X.

The following example is in support of Theorem 3.1.

Example 3.1. Let X = [0,7
6
]. We define S:X3 → [0,∞) by S(ξ, ϑ, w) = max{|ξ−

w|, |ϑ− w|}, for all ξ, ϑ, w ∈ X. Then S is an S-metric on X.
We define h:X → X by
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hξ =

{
1
2

if ξ ∈ [0, 1]
4
3
− ξ if ξ ∈ (1, 7

6
]

.

We define ψ, ϕ : [0,∞) → [0,∞) by
ψ(t) = t, for all t≥ 0 and ϕ(t) = t

1+t
for all t≥0.

We now show that h satisfies inequality (2).
Case(i) Let ξ, ϑ, w ∈[0,1].
Without loss of generality, we assume that ξ > ϑ > w.
S(hξ, hϑ, hw) = S(1

2
, 1
2
, 1
2
) = 0. Then trivially the inequality (2) holds.

Case(ii) Let ξ, ϑ, w ∈ (1,7
6
].

Without loss of generality, we assume that ξ > ϑ > w.

S(hξ, hϑ, hw) = S(
4

3
− ξ,

4

3
− ϑ,

4

3
− w) = max{|4

3
− ξ − (

4

3
− w)|, |4

3
− ϑ− (

4

3
− w)|}

= max{|w − ξ|, |w − ϑ|} = ξ − w ≤ 1

6
≤ 4

15
=

2

3
− 2

5

≤ S(ξ, ξ, hξ)− S(ξ, ξ, hξ)

1 + S(ξ, ξ, hξ)
=

(S(ξ, ξ, hξ))2

1 + S(ξ, ξ, hξ)

≤ (M(ξ, ϑ, w))2

1 +M(ξ, ϑ, w)
=M(ξ, ϑ, w)− M(ξ, ϑ, w)

1 +M(ξ, ϑ, w)

= ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w)).

Case(iii) Let ϑ,w ∈[0,1] and ξ ∈ (1, 7
6
].

Without loss of generality, we assume that ϑ > w.

S(hξ, hϑ, hw) = S(
4

3
− ξ,

1

2
,
1

2
) = max{|4

3
− ξ − 1

2
|, |1

2
− 1

2
|}

= ξ − 5

6
≤ 1

6
≤ 4

15
=

2

3
− 2

5

≤ S(ξ, ξ, hξ)− S(ξ, ξ, hξ)

1 + S(ξ, ξ, hξ)
=

(S(ξ, ξ, hξ))2

1 + S(ξ, ξ, hξ)

≤ (M(ξ, ϑ, w))2

1 +M(ξ, ϑ, w)
=M(ξ, ϑ, w)− M(ξ, ϑ, w)

1 +M(ξ, ϑ, w)

= ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w)).

Case(iv) Let w ∈[0,1] and ξ, ϑ ∈ (1, 7
6
].

Without loss of generality, we assume that ϑ > ξ.

S(hξ, hϑ, hw) = S(
4

3
− ξ,

4

3
− ϑ,

1

2
) = max{|4

3
− ξ − 1

2
|, |4

3
− ϑ− 1

2
|}
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= max{|5
6
− ξ|, |5

6
− ϑ|} = ξ − 5

6
≤ 1

6
≤ 4

15
=

2

3
− 2

5

≤ S(ϑ, , ϑ, hϑ)− S(ϑ, , ϑ, hϑ)

1 + S(ϑ, , ϑ, hϑ)
=

(S(ϑ, , ϑ, hϑ))2

1 + S(ϑ, , ϑ, hϑ)

≤ (M(ξ, ϑ, w))2

1 +M(ξ, ϑ, w)
=M(ξ, ϑ, w)− M(ξ, ϑ, w)

1 +M(ξ, ϑ, w)

= ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w)).

Case(v) Let ξ, ϑ ∈[0,1] and w ∈ (1, 7
6
].

Without loss of generality, we assume that ξ > ϑ.

S(hξ, hϑ, hw) = (
1

2
,
1

2
,
4

3
− w) = max{|1

2
− (

4

3
− w)|, |1

2
− (

4

3
− w)|}

= w − 5

6
≤ 1

6
≤ 4

15
=

2

3
− 2

5

≤ S(ξ, ξ, hξ)− S(ξ, ξ, hξ)

1 + S(ξ, ξ, hξ)
=

(S(ξ, ξ, hξ))2

1 + S(ξ, ξ, hξ)

≤ (M(ξ, ϑ, w))2

1 +M(ξ, ϑ, w)
=M(ξ, ϑ, w)− M(ξ, ϑ, w)

1 +M(ξ, ϑ, w)

= ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w)).

case(vi) Let ξ ∈[0,1] and ϑ,w ∈ (1, 7
6
].

Without loss of generality, we assume that w > ϑ.

S(hξ, hϑ, hw) = S(
1

2
,
4

3
− ϑ,

4

3
− w) = max{|1

2
− (

4

3
− w)|, |4

3
− ϑ− (

4

3
− w)|}

= max{w − 5

6
, |w − ϑ|} = w − 5

6
≤ 1

6
≤ 4

15
=

2

3
− 2

5

= S(ϑ, ϑ, hϑ)− S(ϑ, ϑ, hϑ)

1 + S(ϑ, ϑ, hϑ)
=

(S(ϑ, ϑ, hϑ))2

1 + S(ϑ, ϑ, hϑ)

≤ (M(ξ, ϑ, w))2

1 +M(ξ, ϑ, w)
=M(ξ, ϑ, w)− M(ξ, ϑ, w)

1 +M(ξ, ϑ, w)

= ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w)).

case(vii) Let ϑ ∈[0,1] and ξ, w ∈ (1, 7
6
].

Without loss of generality, we assume that w > ξ.

S(hξ, hϑ, hw) = S(
4

3
− ξ,

1

2
,
4

3
− w) = max{|4

3
− ξ − (

4

3
− w)|, |1

2
− (

4

3
− w)|}
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= max{|w − ξ|, w − 5

6
} = w − 5

6
≤ 1

6
≤ 4

15
=

2

3
− 2

5

= S(ϑ, ϑ, hhϑ)− S(ϑ, ϑ, hϑ)

1 + S(ϑ, ϑ, hϑ)
=

(S(ϑ, ϑ, hϑ))2

1 + S(ϑ, ϑ, hϑ)

≤ (M(ξ, ϑ, w))2

1 +M(ξ, ϑ, w)
=M(ξ, ϑ, w)− M(ξ, ϑ, w)

1 +M(ξ, ϑ, w)

= ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w)).

From all the above cases, we conclude that h is an (ψ, ϕ)-generalized almost
weakly contraction map on X and 1

2
is the unique fixed point of h.

4 Conclusion
In this paper, we establish an existence and uniqueness of a fixed point the-

orem for (ψ, ϕ)-generalized almost weakly contraction maps in S-metric spaces.
As S-metric space is a generalization of metric space, our result in this article ex-
tends and improves the result of Khandaqji, Al-Sharif and Al-Khaleel [9] and also
generalize several well-known comparable results in the literature. Further, the
result in this paper can be extended to several spaces like Sb-metric space, partial
Sb-metric spaces and other spaces.
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Abstract

This thesis is in the area of fixed point theory mainly focusing on certain fixed,

common and coupled fixed theorems for different contractions

in various spaces like S-metric spaces, Sb-metric spaces and bicomplex valued

metric spaces. The whole thesis is divided into six chapters.

In Chapter - 1, we give introduction of fixed point theory and provide

fundamental definitions, examples, some standard lemmas and properties of

metric, b-metric, S-metric, Sb-metric spaces and bicomplex valued metric spaces.

We also provide several compatible conditions, common limit in the range (CLR)

properties and implicit relations.

In Chapter - 2 of the thesis, we define (ψ, ϕ) - almost weakly generalized

contractive map in S-metric spaces and prove the existence and uniqueness of

fixed point theorem for such maps. We provide an example to validate our result.

This result extends and generalizes a result of Khandaqji, Al-Sharif and Al-Khaleel

[111] in G-metric spaces.

In Chapter - 3 of the thesis, we prove a fixed point theorem by defining

generalized Zs-contraction in relation to the simulation function in S-metric spaces.

In addition to that, we provide an example which supports our result. The result

presented in this chapter generalizes the result of Nihal Tas, Nihal Yilmaz Ozgur

and N. Mlaiki [83] in S-metric spaces.

In Chapter - 4 of the thesis, we define (ψ, ϕ) - weakly generalized

contractive map in Sb-metric spaces and prove the existence and uniqueness of

fixed point theorem for such maps. We also give an example to support of our

result. The result presented in this chapter extends and improves the result of

GVR. Babu and B.K. Leta [87] in S-metric spaces.

In Chapter - 5 of the thesis, we define an implicit relation in Sb-metric spaces

and prove some fixed and common fixed-point theorems in Sb-metric spaces. The

vi



results presented in this chapter extend and generalize the results of GS Saluja

[110] in S-metric spaces.

In Chapter- 6 of the thesis, we establish three unique common fixed point

theorems for two self-mappings, four self-mappings and six self-mappings in the

bicomplex valued metric spaces. Firstly, we generate a common fixed point

theorem for four self-mappings by using weaker conditions such as weakly

compatibility and CLRAB property. Secondly, we generate a common fixed point

theorem for six self-mappings by using inclusion relation, generalized contraction,

weakly compatible and commuting maps. Finally, we generate a common coupled

fixed point for two self mappings using a generalized contraction in the bicomplex

valued metric space.

Thus, in this research work, we investigate the existence and uniqueness of fixed,

common and coupled fixed points satisfying specific contractive conditions in

various spaces.
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Introduction

1



1.1 Introduction and Preliminaries

Fixed point theory is a very broad topic of mathematical research and it has

extensive applications in various fields of Mathematics such as: Classical

Analysis, Functional Analysis, Operator Theory, Topology, Algebraic Topology,

Approximation Theory, Successive Approximation, Integral Equations,

Differential Equations, Functional Equations, Variational Inequalities and

several others. The origin of fixed point theory dates to the later part of the

nineteenth-century heavily rests on the use of successive approximations to

establish the existence and uniqueness of solutions, particularly to the

differential equations. Fixed point results are also used to study the optimal

control problems of some nonlinear systems. In fact, fixed point results on

ordered metric spaces provide us exact or approximate solutions of boundary value

problems. The theory of fixed points also serves as a bridge between Analysis and

Topology besides facilitating a very useful area of interaction between the two.

The fixed point theory continues to be a young area of research despite

having a history of more than hundred years. The strength of fixed point

theory lies in its applications which is scattered throughout the existing

literature of fixed point theory. Fixed point theory has gained impetus, due to

its wide range of applicability, to resolve diverse problems emanating from the

theory of nonlinear differential equations, of nonlinear integral equations, game

theory, mathematical economics, control theory, and so forth. For example, in

theoretical economics, such as general equilibrium theory, a situation arises where

one needs to know whether the solution to a system of equations necessarily exists;

or, more specifically, under what conditions will a solution necessarily exist. The

mathematical analysis of this question usually relies on fixed point theorems.

Hence finding necessary and sufficient conditions for the existence of fixed points is

an interesting aspect. In the field of metric fixed point theory, the first

important and significant result was proved for contraction mapping in complete

metric space by Banach [1] in 1922. It is widely considered as the source of metric

fixed point theory. Also, its significance lies in its vast applicability in a number

of branches of mathematics.
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As expected, a self-mapping h on a nonempty set X is said to have a fixed point

ξ ∈ X, if ξ remains fixed under h (i.e., hξ = ξ). In order to illustrate this fact,

let us consider the simple quadratic equation ξ2 − 5ξ + 6 = 0. Clearly, ξ = 2 and

ξ = 3 are the roots of this equation. Also, we can rewrite this equation in the

following form:

ξ = ξ2+6
5

.

If we think of a real valued map, then the above equation reduces to hξ = ξ. We

notice that ξ = 2 and ξ = 3 are the two fixed points of h. Thus, from the above

observations, we conclude that the problem of finding a solution of the functional

equation hξ − ξ = 0, is the same as finding the fixed point of the mapping h.

A self-mapping h on a nonempty set X can have no fixed point, unique fixed

point, a finite number of fixed points and infinitely many fixed points as given

below:

1.1.1 Example: Let X=R (The set of all Real numbers) and h:X→X be a

mapping defined as:

(i) hξ = ξ+a, for a̸=0;

(ii) hξ = ξ
2
;

(iii) hξ = ξ2;

(iv) hξ = ξ.

Notice that, in example (i) h has no fixed point, (ii) h has unique fixed point

(namely 0), (iii) h has two (finite) fixed points (namely 0 and 1) and (iv) h has

infinite fixed points (namely R).

Historically, the origin of fixed point theory was effectively utilized to establish the

existence and uniqueness of a solutions of differential equations at the end of the

nineteenth century. This method can be traced back to the

mathematical activities of great mathematicians, such as Cauchy [2], Liouville

[3], Lipschitz [4], Peano [5], Picard [6] and some others. But formally, it was

started as an important part of analysis in the pioneering work of the great French

mathematician Poincaré [7]. By now, there exists an extensive literature on this

topic and continues to be a very active domain of research. The investigation of

fixed points for several classes of mappings is still on. Though the existence or

non existence of a fixed point is an intrinsic property of a mapping, there do exist

many necessary or sufficient conditions for the existence of fixed points involving
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a mixture of topological, order-theoretic or geometric properties on the mapping

or in its domain. Fixed point theory is broadly divided into the following three

major areas:

1. Topological fixed point theory.

2. Discrete fixed point theory.

3. Metric fixed point theory.

It is not possible to give a comprehensive illustration of core results of a wide

and extensive subject like fixed point theory in few paragraphs. However, for a

comprehensive study of fixed point theory and its related results, one can consult

classical books of Goebel and Kirk [8], Khamsi and Kirk [9], Kirk and Sims [10],

Singh et al. [11], Agarwal et al. [12], Dugundji and Granas [13] and Smart [14].

The results of the present thesis fall in the domain of metric fixed point

theory. So, in the next section we will talk about this branch of fixed point

theory.

The origin of metric fixed point theory is often traced back to the classical

Banach contraction principle which was originated in the Ph.D. thesis of the

great Polish mathematician Banach [1], in 1922. This principle remains the most

versatile elementary result in metric fixed point theory. Metric fixed point theory

is comprised of such fixed point results in which the ambient space is equipped with

some distance function and the geometric properties of the underlying

mappings are effectively utilized. This theory is relatively not new in the

functional analysis but still a very active area of research. Before presenting the

Banach contraction principle, we recall some relevant notions utilizing geometrical

properties of underlying mappings defined on a metric space.

1.1.2 Definition: Let (X, d) be a metric space. A mapping h : X→ X is called

(i) isometry if d(hξ, hϑ) = d(ξ, ϑ), for all ξ, ϑ ∈ X,

(ii) Lipschitzian (or α-Lipschitzian) if there exists α > 0 such that

d(hξ, hϑ) ≤ α d(ξ, ϑ) ∀ξ, ϑ ∈ X,

(iii) non-expansive if h is 1-Lipschitzian

(iv) expansive if there exists α > 1 such that d(hξ, hϑ) ≥ α d(ξ, ϑ) ∀ ξ, ϑ ∈ X,
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(v) contractive if d(hξ, hϑ) < d(ξ, ϑ) ∀ξ, ϑ ∈X, ξ ̸= ϑ,

(vi) contraction (or linear contraction or α-contraction) if h is α-Lipschitzian with

α ∈[0, 1) such that

d(hξ, hϑ) ≤ αd(ξ, ϑ) ∀ξ, ϑ ∈ X.

1.1.3 Definition: Let X be a nonempty set, h be a self-mapping on X and

ξ0 ∈ X. A sequence {ξn} ⊂ X is called Picard’s sequence of h based at ξ0 if

ξn = hξn−1 = hnξ0 ∀n ∈ N.

The following result is known in the literature as Banach contraction principle

and remains the most versatile elementary result in metric-theoretical fixed point

theory.

1.1.4 Theorem: [1] Every contraction mapping on a complete metric space has

a unique fixed point.

Moreover, the classical Banach contraction principle guarantees that Picard’s

sequence of h based at any point converges to the fixed point, i.e., starting at

any point ξ0 ∈ X, the repeated iterations of the mapping at ξ0 yields a sequence

that converges to the unique fixed point of h. The advantage of this principle is

that its hypotheses is very simple and always gives a unique fixed point which can

be found using a straightforward method. The only disadvantage attached to this

principle is that assuming the mapping to be contraction forces the

mapping h to be continuous at each point of the space. However, this principle is

widely considered as the source of metric fixed point theory and one of the most

fundamental and powerful tools of nonlinear analysis.

Coincidence and Common fixed Point Theory

Let X be a non empty set. Recall that an element ξ ∈ X is said to be a fixed

point of a self-mapping h on X if hξ = ξ. This equation can be written as hξ = Iξ

(where I denotes the identity mapping on X). This observation raised an obvious

question: under what conditions can one replace the identity mapping by another

self-mapping g on X such that hξ = gξ? The answer to this question opened a

new door towards a new type of activity in fixed point theory under the umbrella
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of theory of coincidence points. Henceforth, given a pair of self-mappings (h, g)

defined on X, consider the following problem regarding to find ξ, ξ∗ ∈ X such that

hξ = gξ = ξ∗.

Then

• ξ is called a coincidence point of the pair (h, g),

• ξ∗ is called a point of coincidence of the pair (h, g),

• ξ is called a common fixed point of the pair (h, g), if ξ = ξ∗.

Notice that, every common fixed point of the pair (h, g) is also a coincidence

point as well as point of coincidence.

In 1967, Machuca [15] proved the earliest metrical coincidence theorem for a pair

of mappings h, g : X → Y, where X and Y are complete metric spaces and

T1-topological space satisfying the first axiom of countability respectively. By

taking Y = X, in Machuca coincidence theorem we get the following theorem.

1.1.5 Theorem: Let (X, d) be a complete metric space and h and g be two

self-mappings on X. Suppose that the following conditions hold:

(i) h(X) ⊂ g(X),

(ii) there exists α ∈ [0, 1) such that

d(hξ, hϑ) ≤ α d(gξ, gϑ) ∀ξ, ϑ ∈ X,

(iii) either h(X) or g(X) is closed.

Then f and g have a coincidence point.

The condition (iii) was only used to guarantee that (h(X), d) or (g(X), d) is a

complete metric space. In 1968, Goebel [16] observed that the condition “h(X)

(or g(X)) is complete without assuming the completeness of X” is relatively weaker

than “(X, d) is complete and h(X) (or g(X)) is closed” and utilized the same to

extend Machuca coincidence theorem for two mappings h, g : X → Y, where X

and Y are complete metric space and an arbitrary set respectively. On taking

Y = X, Goebel coincidence theorem runs as:
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1.1.6 Theorem: Let (X, d) be a complete metric space and h and g two

self-mappings on X. Suppose that the following conditions hold:

(i) h(X) ⊂ g(X),

(ii) there exists α ∈ [0, 1) such that

d(hξ, hϑ) ≤ α d(gξ, gϑ) ∀ξ, ϑ ∈ X,

(iii) either h(X) or g(X) is a complete subspace of X.

Then h and g have a coincidence point.

Fixed point theorems are statements containing sufficient conditions that ensure

the existence of a fixed point. Therefore, one of the central concerns in fixed

point theory is to find a minimal set of sufficient conditions which guarantee a

fixed point or a common fixed point as the case may be. Common fixed point

theorems for contractive type mappings necessarily require a commutativity

condition, a condition on the ranges of the mappings, continuity of one or more

mappings besides a contractive condition. And every significant fixed point or

common fixed point theorem attempts to weaken or obtain a necessary version of

one or more of the these conditions [26].

In 1976, using condition (i) of Theorem 1.1.6., Jungck [25] obtained common fixed

point for commuting mappings by using a constructive procedure of sequence of

iterates.

1.1.7 Theorem: [25] Let (X, d) be a complete metric space and let h and g

be commuting self-maps of X satisfying the conditions:

(i) hX ⊆ gX;

(ii) d(hξ, hϑ) ≤ αd(gξ, gϑ), for all ξ, ϑ ∈X and some 0 ≤ α < 1.

If g is continuous then h and g have a unique common fixed point.

The essence of Jungck’s theorem has been used by several researchers to obtain

interesting common fixed point theorems for both commuting and non-commuting

pairs of mappings satisfying contractive type conditions. The constructive

technique of Jungck’s theorem has been further improved and extended by

various researchers to establish common fixed point theorems for three mappings,

four mappings and sequence of mappings (see also [[27]-[33]]).
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Generalizations of Jungck’s contraction condition have been extensively used to

study common fixed points of contractive mappings. If h and g are two

self-mappings of a metric space (X, d), general contractive conditions assume the

following form.

(a) ϕ-type contractive condition (in the sense of Boyd and Wong [34]);

d(hξ, hϑ) ≤ ϕ d(gξ, gϑ),

where ϕ : R+ → R+ is such that ϕ is upper semi-continuous from the right and

ϕ(t) < t for each t > 0.

(b) Given ϵ > 0 there exists a δ > 0 such that

ϵ ≤ d(gξ, gϑ) < ϵ+ δ =⇒ d(hξ, hϑ) < ϵ.

Condition (b) is also referred to as a Meir-Keeler type (ϵ, δ) contractive condition

[35]. It can easily be seen that if h and g satisfy (b) then h and g also satisfy the

contractive condition

d(hξ, hϑ) < d(gξ, gϑ).

In some results the contractive condition (b) has been replaced by a slightly weaker

contractive condition of the following form.

(c) Given ϵ > 0 there exists a δ > 0 such that

ϵ < d(gξ, gϑ) < ϵ+ δ =⇒ d(hξ, hϑ) ≤ ϵ.

Jachymski [36] has shown that the contractive condition (c) implies (b) but not

conversely.

In the setting of common fixed point theorems, the Meir-Keeler type (ϵ, δ)

contractive condition alone is not sufficient to guarantee the existence of a

common fixed point. While assuming the (ϵ, δ) contractive condition, the

existence of a common fixed point is ensured either by imposing some additional

restriction on δ or by assuming some additional condition besides the (ϵ, δ)

contractive condition or by imposing strong conditions on the continuity of

mappings (for references see [[37] - [44]]).
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In 1982, Sessa gave the weaker version of the commutativity condition, namely the

weakly commuting condition. In subsequent years Jungck [[18],[19]], Tivari and

Singh [45], Pathak [[46], [47]], Jungck et al. [48], Jungck and Pathak [49], Pant

[50], Pathak et al. [51], Al-Thagafi and Shahzad [52], Hussain et al. [53], Pant

and Bisht [54], Bisht and Shahzad [55] and many others have considered several

generalizations of commuting mappings or weaker notions of commutativity.

The first ever attempt to relax the commutativity of mappings to a smaller subset

of the domain of mappings was initiated by Sessa [17] who in 1982 gave the notion

of weak commutativity.

1.1.8 Definition: (Sessa [17]) Two self-mappings h and g of a metric space

(X, d) are called weakly commuting iff d(hgξ, ghξ) ≤ d(hξ, gξ) for all ξ in X.

Notice that commuting mappings are obviously weakly commuting. However,

a weakly commuting mappings need not be commuting.

1.1.9 Example: Let X = [0, 1] be equipped with the usual metric d on X.

Define constant mappings h and g : X→X by

hξ = a and gξ = b, a ̸= b.

Then h and g are weakly commuting but not commuting

since d(hgξ, ghξ) = |a− b| = d(hξ, gξ).

In 1986, Jungck generalized the concept of weak commutativity by introducing

the notion of compatible mappings [18] also called asymptotically commuting

mappings by Tivari and Singh [45] in an independent work. In [32] it has been

shown that two continuous self-mappings of a compact metric space are

compatible iff they commute on their set of coincidence points.

1.1.10 Definition: (Jungck [18], Tivari and Singh [45]) Two self-mappings h

and g of a metric space (X, d) are called compatible or asymptotically commuting

if and only if limn→∞d(hgξn, ghξn) = 0, whenever {ξn} is a sequence in X such

that limn→∞hξn = limn→∞gξn = t for some t in X.
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Clearly, weakly commuting mappings are compatible, but the converse does not

hold.

1.1.11 Example: [18] Let X = [0,∞) and d be the usual metric on X.

Define h , g : X→X by hξ = ξ3 for all ξ and gξ = 2ξ3 for all ξ.

Then d(hgξ, ghξ) > d(hξ, gξ). Therefore h and g are not weakly commuting

mappings. However, h and g are compatible mappings.

1.1.12 Remark: Notice that the notions of weak commutativity and

compatibility differ in one respect. Weak commutativity is essentially a point

property, while the notion of compatibility uses the machinery of sequences.

Ever since the introduction of compatibility, the study of common fixed points

has developed around compatible maps and its weaker forms [[66],[67]] and it has

become an area of vigorous research activity. However, fixed point theory for non

compatible mappings is equally interesting and Pant [56] has initiated some work

along these lines. One can establish fixed point theorems for such mappings pairs

not only under non expansive conditions but also under Lipschitz type conditions

even without using the usual contractive method of proof. The best examples of

non compatible maps are found among pairs of mappings which are discontinuous

at their common fixed point [56]. It may be observed that the mappings h and g

are said to be non compatible if there exists a sequence {ξn} in X such that for

some t in X but limn→∞d(hgξn, ghξn) is either non-zero or nonexistent.

1.1.13 Definition: [57] Two self-mappings h and g of a metric space (X, d)

are said to satisfy the (E.A.) property if there exists a sequence {ξn} in X such

that limn→∞hξn = limn→∞gξn = t for some t ∈ X.

If h and g are both non compatible then they do satisfy the (E.A.) property. In fact

the notion of the (E.A.) property circumvents the most crucial part of fixed point

theorems consisting of constructive procedures yielding a Cauchy

sequence. On the other hand the (E.A.) property enables us to study the

existence of common fixed point of non expansive or Lipschitz type conditions

in the setting of non complete metric spaces.
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Sintunavarat and Kumam [58] introduced an interesting property, namely the

common limit in the range property (in short CLRg ) which completely buys the

condition of closedness of the ranges of the involved mappings and has an edge

over the (E.A.) property (see also [[59]-[64]]).

1.1.14 Definition: [[58],[65]] Two self-mappings h and g of a metric space

(X, d) are said to be satisfy the common limit in the range of g property (CLRg)

if there exists a sequence ξn in X such that limn→∞hξn = limn→∞gξn = gξ for

some ξ ∈ X.

It is important to note that in the setting of metric spaces, there is no

general method for the study of common fixed points of non expansive or

Lipschitz type mappings. The notions of non compatibility, the (E.A.)

property and CLRg property are well suited for studying common fixed points of

strict contractive conditions, non expansive type mapping pairs or Lipschitz type

mapping pairs in ordinary metric spaces, which are not even complete.

1.1.15 Definition: A pair of self-mappings (h, g) defined on a nonempty set

X is said to be commuting if h(gξ) = g(hξ) for all ξ ∈ X.

1.1.16 Definition: [19] Let (h, g) be a pair of a self-mappings on a metric

space (X, d). Then the pair (h, g) is said to be weakly compatible if

hξ = gξ =⇒ g(hξ) = h(gξ).

Now, we present the following lemma which is used in the sequel.

1.1.17 Lemma: [20] Let (h, g) be a pair of weakly compatible self-mappings

defined on a nonempty set X. Then every point of coincidence of the pair (h, g)

remains a coincidence point.
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Metric Spaces

In 1906, Maurice Rene Frechet introduced the basic notion of metric spaces in

his doctoral dissertation [21] submitted to Paris University.

1.1.18 Definition: [21] Let X be a nonempty set. The mapping d:X × X→ [0,∞)

is said to be a metric on X, if it satisfies the following

(∀ξ, ϑ, w ∈ X):

(i) d(ξ, ϑ) ≥ 0 ∀ξ, ϑ ∈ X

(ii) d(ξ, ϑ) = 0 if and only if ξ = ϑ; (identity of indiscernibles)

(iii) d(ξ, ϑ) = d(ϑ, ξ); (symmetry)

(iv) d(ξ, ϑ) ≤ d(ξ, w) + d(w, ϑ). (triangle inequality)

The set X together with a metric d is called metric space and is often denoted by

(X, d). If there is no confusion likely to occur, we sometimes, denote the metric

spaces (X, d) by X.

1.1.19 Example: Let X = R, the set of all real numbers. Define

d : X ×X → [0,∞) by d(ξ, ϑ) = |ξ − ϑ|, ∀ξ, ϑ ∈ X.

Then the pair (X, d) is a metric space and the metric d is called the usual metric

on R.

1.1.20 Definition: [21] A sequence {ξn} in (X, d) is said to be convergent to

ξ ∈ X if and only if limn→∞d(ξn, ξ) = 0.

1.1.21 Definition: [21] A sequence {ξn} in (X, d) is said to be Cauchy if and

only if limn,m→∞d(ξn, ξm) = 0.

1.1.22 Definition: [21] A metric space (X, d) is said to be complete if every

Cauchy sequence in X converges to a point in X.

b-Metric Spaces

In 1989, I.A. Bakhtin [22] and S. Czerwik [23] introduced the concept of b-metric

space as a noted improvement of metric spaces.
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1.1.23 Definition: [[22], [23]] Let X be a nonempty set with s ≥ 1. The

mapping σ: X × X → [0, 1) is said to be a b-metric on X, if it satisfies the

following (∀ξ, ϑ, w ∈ X):

(i) σ(ξ, ϑ) = 0 if and only if ξ = ϑ;

(ii) σ(ξ, ϑ) = σ(ϑ, ξ);

(iii) σ(ξ, ϑ) ≤ s[σ(ξ, w) + σ(w, ϑ)].

Then the pair (X, σ) is said to be a b-metric space.

1.1.24 Example: Let X = R, the set of all real numbers. For any ξ, ϑ ∈ X,

define σ(ξ, ϑ) = |ξ − ϑ|2. Then the pair (X, σ) is a b-metric space with s = 2.

1.1.25 Definition: [23] A sequence {ξn} in (X, σ) is said to be convergent to

ξ ∈ X if and only if limn→∞d(ξn, ξ) = 0.

1.1.26 Definition: [23] A sequence {ξn} in (X, σ) is said to be Cauchy if and

only if limn,m→∞σ(ξn, ξm) = 0.

1.1.27 Definition: [23] A b-metric space (X, σ) is said to be complete if

every Cauchy sequence in X converges to a point in X.

The following example shows that a general a b-metric is not a continuous

mapping.

1.1.28 Example: [24] Let X = N ∪ ∞ and a mapping σ : X × X → [0,∞)

defined by:

σ(ξ, ϑ) =


0 if ξ = ϑ

|1
ξ
− 1

ϑ
| if ξ, ϑ are even or ξϑ = ∞

5 if ξ, ϑ are odd or ξ ̸= ϑ

5 if otherwise.

.

Then the pair (X, σ) is a b-metric space with s=3 but it is not continuous.

In an attempt to generalize fixed point theorems proved for self maps of metric

spaces, B.C.Dhage [68] has introduced generalized metric spaces called D-metric

spaces as follows:

1.1.29 Definition: A nonempty set X, together with a function D : X3 → [0,∞)

is called a D-metric space, denoted by (X, D) if D satisfies
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(i) D(ξ, ϑ, w) = 0 if and only if ξ = ϑ = w (coincidence),

(ii) D(ξ, ϑ, w) = D(p{ξ, ϑ, w}), where p is a permutation of ξ, ϑ, w (symmetry),

(iii) D(ξ, ϑ, w) ≤ D(ξ, ϑ, a) + D(ξ, a, w) + D(a, ϑ, w) for all ξ, ϑ, w, a ∈ X

(tetrahedral inequality).

The non negative real function D is called a D-metric on X.

Subsequently several researchers made significant contribution to the fixed point

theory for self maps of D-metric spaces in [69],[70],[71],[72] and [73]. Unfortunately

most of the claims concerning the topological structures of D-metric spaces were

proved to be by incorrect by S.V.R.Naidu and others in [74], [75] and [76].

As a probable modification to D-metric spaces, Shaban Sedghi, Nabi Shobe and

Haiyun Zhou [77] introduced D*-metric spaces. In 2006, Zead Mustafa and

Brailey Sims [78] initiated G - metric spaces. While, Shaban Sedghi, Nabi Shobe

and Abdelkrim Aliouche [79] introduced S - metric spaces. It was claimed in [79]

that (i) every G - metric space is a D*-metric space (ii) every D*-metric space is

an S-metric space and therefore (iii) every G - metric space is an S -metric space.

We observe by means of an examples in the next two sections that although (ii)

is correct, (i) and (iii) are not.

The generalized metric spaces

In this section we give the definitions of the three generalized metric spaces and

provide some examples in each case.

1.1.30 Definition: [77] Let X be a non-empty set. A function D∗ : X3 → [0,∞)

is said to be a D*-metric on X, if it satisfies the conditions:

(i) D∗(ξ, ϑ, w) = 0 if and only if ξ = ϑ = w.

(ii) D∗(ξ, ϑ, w) = D∗(σ(ξ, ϑ, w)) for all ξ, ϑ, w ∈ X

where σ(ξ, ϑ, w) is a permutation of the set {ξ, ϑ, w}
(iii) D∗(ξ, ϑ, w) ≤ D∗(ξ, ϑ, z) +D∗(z, w, w) for all ξ, ϑ, w, z ∈ X .

A set X with D*-metric is called a D*-metric space and it is denoted by (X, D*).
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1.1.31 Example: Let X ={a, b, c} and D∗ : X3 → [0,∞) be defined by

D∗(ξ, ϑ, w) =


0 if ξ = ϑ = w
1
2

if ξ, ϑ, w are distinct

1 if otherwise.

.

For instance

(1.1.32.) D∗(a, b, c) = 1
2
while D∗(a, a, b) = 1

It is easy to see that (X, D*) is a D*- metric space, in fact conditions (i) and (ii)

of Definition 1.1.30 are trivial. Also if w = z condition (iii) of Definition 1.1.30.

holds obviously; In case w ̸= z, we have sub cases of x = y = z; and ξ ̸= ϑ with

z ∈ {ξ, ϑ} and z /∈ {ξ, ϑ} and in each case (iii) can be verified easily.

1.1.33 Remark: It was shown in ([78], Remark 1.2) that D∗(ξ, ξ, ϑ) = D∗(ξ, ϑ, ϑ)

for all ξ, ϑ ∈ X .

Zead Mustafa and Brailey sims introduced the generalized metric(G-metric) spaces

in 2006.

1.1.34 Definition: [78] Let X be a non-empty set and G : X3 → [0,∞) be a

function satisfying:

(G1) G(ξ, ϑ, w) = 0 if ξ = ϑ = w

(G2) 0 < G(ξ, ξ, ϑ) for all ξ, ϑ ∈ X with ξ ̸= ϑ

(G3) G(ξ, ξ, ϑ) ≤ G(ξ, ϑ, w) for all ξ, ϑ, w ∈ X with ϑ ̸= w

(G4) G(ξ, ϑ, w) = G(σ(ξ, ϑ, w)) for all ξ, ϑ, w ∈ X, where σ(ξ, ϑ, w) is a

permutation of the set {ξ, ϑ, w} and

(G5) G(ξ, ϑ, w) ≤ G(ξ, z, z) +G(z, ϑ, w) for all ξ, ϑ, w, z ∈ X . Then G is called a

G - metric on X and the pair (X, G) is called a G - metric Space.

Also it is defined (see [79], Definition 4) that a G - metric space (X, G) is

symmetric if

(G6) G(ξ, ξ, ϑ) = G(ξ, ϑ, ϑ) holds for all ξ, ϑ ∈ X.

1.1.35 Example: Let X ={a, b}. Define G : X3 → [0,∞) by G(a, a, a) =

G(b, b, b) = 0; G(a, a, b) = 1, G(a, b, b) = 2 and extend G to all of X3 by using

(G4). Then (X, G) is a G-metric space. Also since G(a, a, b) ̸= G(a, b, b), the

space (X, G) is not a symmetric G - metric space.
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1.2 S-metric spaces

In 2012, Shaban Sedghi, Nabi Shobe and Abdelkrim Aliouche [79] defined

S-metric spaces as follows:

1.2.1 Definition: [79] Let X be a non empty set. The mapping S : X3 → [0,∞)

is said to be an S-metric on X, if it satisfies the following for ξ, ϑ, w, z ∈ X

(S1) S(ξ, ϑ, w) ≥ 0

(S2) S(ξ, ϑ, w) = 0 if and only if ξ = ϑ = w.

(S3) S(ξ, ϑ, w) ≤ S(ξ, ξ, z) + S(ϑ, ϑ, z) + S(w,w, z)

Also the pair (X, S) is called an S-metric space.

1.2.2 Example: Let X = R and S : X3 → [0,∞) be defined by

S(ξ, ϑ, w) = |ϑ+ w − 2ξ|+ |ϑ− w| for all ξ, ϑ, w ∈ X, then (X, S) is an S-metric

space. In this space , note that

(1.2.3.) S(1, 2, 3) ̸= S(2, 3, 1),

since S(1,2,3) = 4 and S(2,3,1) = 2.

1.2.4 Example: Let X =R and S : X3 → [0,∞) be defined by

S(ξ, ϑ, w) = |ξ−w|+ |ϑ−w| for ξ, ϑ, w ∈ X. Then (X, S) is an S-metric space in

which

(1.2.5) S(3, 3, 1) > S(3, 1, 2),

since S(3,3,1) = 4 and S(3,1,2) = 2

1.2.6 Remark: It was shown in ( [79], Lemma 2.5) that

S(ξ, ξ, ϑ) = S(ϑ, ϑ, ξ) for all ξ, ϑ ∈ X

1.2.7 Example: [79] Define S:X3 → [0,∞) by S(ξ, ϑ, w) = d(ξ, ϑ) + d(ξ, w)

+ d(ϑ,w) for any ξ, ϑ, w ∈ X, where (X, d) be a metric space. Then (X, S) is an

S-metric space.

1.2.8 Example: Suppose X=[0, 1] and S:X3 → [0,∞) be defined by

S(ξ, ϑ, w) =

{
0 if ξ = ϑ = w

max{ξ, ϑ, w} otherwise
.

Then (X, S) is an S-metric space.
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Observations on the three generalizations of metric

First we note that the three generalized metrics D*, G and S on any non empty

set X are functions defined on X3 into [0,∞).

1.2.9. The D*-metric space given in Example 1.1.31. is not a G - metric space

since it does not possess the condition (G3) in view of (1.1.32.).

1.2.10 The G - metric space in Example 1.1.35. is not symmetric and

therefore it does not possess the property mentioned in Remark 1.1.33. Hence

it is not a D*- metric space.

1.2.11. The G -metric space given in Example 1.1.35. is not an S-metric space

as it fails to possess the property mentioned in 1.2.6.

1.2.12. The S -metric space given in Example 1.2.4. is not a G-metric space

since condition (G3) fails in view of (1.2.5.)

Thus the notions of D*-metric space and G - metric space are independent.

Also the G - metric and S-metric are independent concepts on a nonempty set.

However one can prove that every D*-metric space is an S-metric space but not

conversely (Ex:1.2.2., in view of 1.2.5.).

Hereafter we consider, in this thesis, S-metric, Sb-metric and bicomplex

metric on non empty sets and fixed point theorems on such spaces.

1.2.13 Definition: Let (X, S) be an S-metric space and A ⊂ X

(i) For any ξ ∈ X, by S-ball about ξ, denoted by Bs(ξ, r) we mean the set

{ϑ ∈ X : S(ϑ, ϑ, ξ) < r} where r > 0

(ii) If for every ξ ∈ A, there exists r > 0 such that Bs(ξ, r) ⊂ A then the subset

A is called an open subset of X .

(iii) A subset A of X is said to be S-bounded if there exists M > 0 such that

S(ξ, ξ, ϑ) < M for all ξ, ϑ ∈ A.

It has been proved in [79] that Bs(ξ, r) is an open set in X and that the topology

τ generated by the open balls as a basis is called the topology induced by the
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S-metric on X. If (X, τ) is a compact topological space, then we say (X, S) is a

compact S -metric space.

1.2.14 Definition: Let (X, S) be an S-metric space. A sequence {ξn} in X

is said to be a

(i) convergent if there is a ξ ∈ X such that S(ξn, ξn, ξ) → 0 as n → ∞; that is, for

each ϵ > 0, there exists n0 ∈ N such that for all n≥ n0, we have S(ξn, ξn, ξ) < ϵ

and we write in this case that limn→∞ξn = ξ.

(ii) Cauchy sequence if for each ϵ > 0, there exists n0 ∈ N such that

S(ξn, ξn, ξm) < ϵ for each n,m ≥ n0.

It is easy to see that (in fact proved in [79], Lemma 2.10 and Lemma 2.11) that,

if {ξn} converges to ξ in (X, S) then ξ is unique and {ξn} is a Cauchy sequence in

(X, S). However a Cauchy sequence in (X, S) need not be convergent as shown in

the following example.

1.2.15 Example: Let X = (0, 1] and S(ξ, ϑ, w) = |ξ − ϑ|+ |ϑ− w|+ |w − ξ| for
ξ, ϑ, w ∈ X. Then (X, S) is an S-metric space. Taking ξn = 1

n
for n = 1,2,3,... then

S(ξn, ξn, ξm) = 2| 1
n
− 1

m
| so that S(ξn, ξn, ξm) → 0 as n,m → ∞ proving that {ξn}

is a Cauchy sequence in (X, S) but {ξn} does not converge to any point in X.

1.2.16 Definition: An S-metric space (X, S) is said to be complete if every

Cauchy sequence in X is converges to a point in X.

The S-metric space given in Example 1.2.15. is not complete.

1.2.17 Lemma: [80] In the S-metric space, we observe

(i) S(ξ, ξ, ϑ) ≤ 2S(ξ, ξ, w) + S(ϑ, ϑ, w) and

(ii) S(ξ, ξ, ϑ) ≤ 2S(ξ, ξ, w) + S(w,w, ϑ)

1.2.18 Definition: [79] Let (X, S) be an S-metric space. Then a mapping

h : X → X is said to be an S-contraction if there exists a constant 0 ≤ τ < 1 such

that

S(h(ξ), h(ξ), h(ϑ)) ≤ τ S(ξ, ξ, ϑ) for all ξ, ϑ ∈ X.
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In 2015, F.Khajasteh, Satish Shukla and S.Radenovic [81] introduced

simulation function and the concept of Z-contration in relation to simulation

function and proved an fixed point theorem which generalizes the Banach

contraction principle. Very recently, Murat Olgun, O.Bicer and T.Alyildiz [82]

defined generalized Z-contraction in relation to the simulation function and proved

a fixed point theorem.

In the year 2019, Nihal Tas, Nihal Ylimaz Ozgur and Nabil Mlaiki [83] proved

an fixed point theorem by employing the collection of simulation mappings on

S-metric spaces.

1.2.19 Definition: [81] We say that a mapping γ : [0,∞) × [0,∞) → R is a

simulation mapping if:

(γ1) γ(0, 0) = 0

(γ2) γ(p, q) < q − p for p,q > 0

(γ3) If {pn}, {qn} are sequences of (0,∞) such that limn→∞ pn = limn→∞ qn > 0,

then limn→∞sup γ(pn, qn) < 0.

We indicate Z as the collection of all simulation mappings. For example,

γ(p, q) = τq − p for 0≤ τ <1 belonging to Z.

1.2.20 Definition: [81] Let (X, d) be a metric space and γ ∈ Z. Then a mapping

h : X → X is said to be a Z-contraction in relation to γ if

γ(d(hξ, hϑ), d(ξ, ϑ)) ≥ 0 for all ξ, ϑ ∈ X.

By considering the Definition (1.2.20). It is concluded that each Banach

contraction becomes Z-contraction in relation to γ(p, q) = τq − p with 0 ≤ τ < 1.

Further, it can be established from the definition of the simulation mapping that

γ(p, q) < 0 for each p ≥ q > 0. Hence, assume that h is a Z-contraction in relation

to γ ∈ Z then

d(hξ, hϑ) < d(ξ, ϑ) for all distinct ξ, ϑ ∈ X.

1.2.21 Theorem: [81] In complete metric space (X, d), each Z-contraction has a

unique fixed point and furthermore the fixed point is the limit of every Picard’s

sequence.
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Nowadays, the study of fixed point theorems for self maps satisfying different

contraction conditions is the center of rigorous research activities. In this

direction, Dutta et al. [85] introduced (ψ, ϕ)-weakly contractive maps in 2008

and obtained some fixed point results for such contractions. Later, G.V.R. Babu

et al. [86] introduced (ψ, ϕ)-almost weakly contractive maps in G-metric spaces in

2014. Fixed points of contractive maps on S-metric spaces were studied by several

authors [87], [88] and [89]. Since then, several contractions have been considered

for proving fixed point theorems.

1.2.22 Definition: Let (X, S) and (Y, S’) be two S-metric spaces. Then a

function h:X→Y is S-continuous at a point ξ ∈X if it is S-sequentially continuous

at ξ. That is, whenever {ξn} is S-convergent to ξ, we have h(ξn) is S’-convergent

to h(ξ).

1.2.23 Lemma: [84] Let (X, S) be an S-metric space and {ξn} be a sequence

in X such that limn→∞ S(ξn, ξn, ξn+1) = 0. If {ξn} is not a Cauchy sequence, then

there exist an ϵ > 0 and two sequences {mk} and {nk} of natural numbers with

nk > mk > k such that S(ξmk
, ξmk

, ξnk
) ≥ ϵ, S(ξmk−1, ξmk−1, ξnk

) < ϵ and

(i)limk→∞ S(ξmk
, ξmk

, ξnk
) = ϵ. (ii) limk→∞ S(ξmk−1, ξmk−1, ξnk

) = ϵ.

(iii) limk→∞ S(ξmk
, ξmk

, ξnk−1) = ϵ. (iv) limk→∞ S(ξmk−1, ξmk−1, ξnk−1) = ϵ.

1.3 Sb-metric spaces

Recently, N.Mlaiki and N.Souayah [90] introduced the Sb-metric spaces as the

generalization of b-metric spaces and S-metric spaces and proved some fixed point

results were proved for such spaces in [90]. Very recently Ozgur and Tas [91]

studied some relations between Sb-metric spaces and some other metric spaces.

Some fixed point results in Sb-metric space were also studied by different authors

in [[90]-[92]].

1.3.1 Definition: [90] Let X ̸= ∅ and s ≥ 1. Then we say a mapping

Sb : X
3 → [0,∞) is an Sb-metric on Ω if :

(i) Sb(ξ, ϑ, w) = 0 if ξ = ϑ = w.

(ii)Sb(ξ, ϑ, w) ≤ s[Sb(ξ, ξ, a) + Sb(ϑ, ϑ, a) + Sb(w,w, a)]
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∀ξ, ϑ, w, a ∈ X. The pair (X, Sb) is known as Sb-metric space.

Each S-metric space is a Sb-metric space for s=1, but the converse statement

is not true. We find an example of Sb-metric, but not an S-metric on X in [91].

1.3.2 Definition: [86] Let (X, Sb) be an Sb-metric space for s≥1. Then

Sb-metric is known as symmetric if Sb(ξ, ξ, ϑ) = Sb(ϑ, ϑ, ξ), ∀ξ, ϑ ∈ X.

1.3.3 Lemma: [93] In Sb-metric space, we have ∀ξ, ϑ, w ∈ X

(i) Sb(ξ, ξ, ϑ) ≤ sSb(ϑ, ϑ, ξ) and Sb(ϑ, ϑ, ξ) ≤ sSb(ξ, ξ, ϑ)

(ii) Sb(ξ, ξ, w) ≤ 2sSb(ξ, ξ, ϑ) + s2Sb(ϑ, ϑ, w).

1.3.4 Definition: [90] Let (X, Sb) is an Sb-metric space and a sequence {ξn}
in X. Then

(i) {ξn} is called an Sb-Cauchy sequence, if for every ϵ > 0, ∃ n0 ∈ N such that

Sb(ξn, ξn, ξm) ≤ ϵ, ∀n,m > n0.

(ii) {ξn} → ξ ⇐⇒ for each ϵ > 0, ∃ n0 ∈ N such that Sb(ξn, ξn, ξ) < ϵ and

Sb(ξ, ξ, ξn) < ϵ ∀n ≥ n0 and we write as limn→∞ ξn = ξ.

1.3.5 Definition: [90] We say that (X, Sb) is complete if each Sb-Cauchy

sequence is Sb-Convergent in X.

Tas and Ozgur [91] proved the following theorems in Sb-metric spaces.

1.3.6 Theorem: Let (X, Sb) be a complete Sb-metric space and s≥1. If h is a

self map on X satisfy

Sb(hξ, hξ, hϑ) ≤ c Sb(ξ, ξ, ϑ)

∀ξ, ϑ ∈ X, where 0 < c < 1
s2
. Then h has a unique fixed point in X.

1.3.7 Example: [92] Let (X, S) be an S-metric space and S∗(ξ, ϑ, w) = [S(ξ, ϑ, w)]q,

where q > 1 is a real number.

Note that S∗ is a Sb-metric with s = 22(q−1). Obviously, S∗ satisfies conditions

(i) 0 < S∗(ξ, ϑ, w), for all ξ, ϑ, w ∈ X with ξ ̸= ϑ ̸= w.

(ii) S∗(ξ, ϑ, w) = 0 if ξ = ϑ = w.

If 1 <q< ∞, then the convexity of the function f(ξ) = ξq, (ξ > 0) implies that

(a+ b)q ≤ 2q−1(aq + bq).
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Thus, for each ξ, ϑ, w, a ∈ X, we obtain,

S∗(ξ, ϑ, w) = S(ξ, ϑ, w)q

≤ ([S(ξ, ξ, a) + S(ϑ, ϑ, a)] + S(w,w, a))q

≤ 2q−1([S(ξ, ξ, a) + S(ϑ, ϑ, a)]q + S(w,w, a)q)

≤ 2q−1([2q−1(S(ξ, ξ, a)q + S(ϑ, ϑ, a)q)] + 2q−1S(w,w, a)q)

≤ 22(q−1)(S(ξ, ξ, a)q + S(ϑ, ϑ, a)q + S(w,w, a)q).

≤ 22(q−1)(S∗(ξ, ξ, a) + S∗(ϑ, ϑ, a) + S∗(w,w, a)).

So, S∗ is a Sb-metric with s = 22(q−1).

In this article we indicate:

(i)Ψ = {ψ : [0,∞) → [0,∞) : ψ is non decreasing, continuous and ψ(t)=0 ⇐⇒
t=0.}
(ii) Φ = {ϕ : [0,∞) → [0,∞): ϕ is continuous, ϕ(t) = 0 ⇐⇒ t = 0}.

1.3.8 Lemma: [92] Let {ξn} be Sb-convergent to ξ in Sb-metric space (X, Sb)

for s≥1, then we obtain:

(i) 1
2s
Sb(ϑ, ϑ, ξ) ≤ lim infn→∞ Sb(ϑ, ϑ, ξn) ≤ lim supn→∞ Sb(ϑ, ϑ, ξn) ≤ 2sSb(ϑ, ϑ, ξ)

and

(ii) 1
s2
Sb(ξ, ξ, ϑ) ≤ liminfn→∞Sb(ξn, ξn, ϑ) ≤ lim supn→∞ Sb(ξn, ξn, ϑ) ≤ s2Sb(ξ, ξ, ϑ).

1.3.9 Lemma: Let {ξn} be a sequence in Sb-metric space (X, Sb) such that

limn→∞ Sb(ξn, ξn, ξn+1) = 0.

If sequence {ξn} is not Cauchy, then we find an ϵ > 0 and {mk} and {nk} are

sequences of natural numbers with nk > mk > k so that

Sb(ξmk
, ξmk

, ξnk
) ≥ ϵ, Sb(ξmk−1, ξmk−1, ξnk

) < ϵ and

(i)limk→∞ Sb(ξmk
, ξmk

, ξnk
) = ϵ. (ii) limk→∞ Sb(ξmk−1, ξmk−1, ξnk

) = ϵ.

(iii) limk→∞ Sb(ξmk
, ξmk

, ξnk−1) = ϵ. (iv) limk→∞ Sb(ξmk−1, ξmk−1, ξnk−1) = ϵ.

1.4 Bicomplex valued metric spaces

Segre’s [94] paper, published in 1892 made a pioneering attempt in the

development of special algebras. He conceptualized commutative generalization of

complex numbers as bicomplex numbers, tricomplex numbers, etc. as

elements of an infinite set of algebras. Unfortunately this significant work of Segre

failed to earn the attention of the mathematicians for almost a century. However,
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recently a renewed interest in this subject contributes a lot in the different fields of

mathematical sciences and other branches of science and technology.

Price [95] developed the bicomplex algebra and function theory. In this field

an impressive body of work has been developed by different researchers during the

last few years. One can see some of the attempts in [96], [97], [98].

Azam et al. [99] introduced a concept of complex valued metric space and

established a common fixed point theorem for a pair of self contracting

mappings. Rouzkard and Imdad [100] generalized the result obtained by Azam

et al. [99] and they proved another common fixed point theorem satisfying some

rational inequality in complex valued metric space.

Choudhury et al. [[101],[102]] proved some fixed point results in partially

ordered complex valued metric spaces for rational type expressions. Also one

can see the attempts in [103] and [104].

Rao et al. [105] introduced the concept of complex-valued b-metric spaces and

proved a common fixed point theorem in complex valued b-metric spaces.

We denote C0 = R(Real numbers), C1 = C(Complex numbers) and C2 as the

set of bicomplex numbers.

Let z,w ∈ C1 be any two complex numbers, then the partial order relation ⪯ on

C1 is defined as follows:

z ⪯ w if and only if Re(z)≤ Re(w) and Im(z) ≤ Im(w).

Also z ≺ w if Re(z) < Re(w) and Im(z) < Im(w).

Segre’s [94] defined the bicomplex number as:

ζ =b1 + b2i1 + b3i2 + b4i1i2,

where b1, b2, b3, b4 ∈ C0 and i1, i2 are the independent units such that i21 = i22 = −1

and i1i2 = i2i1,

we defined C2 as:

C2 = {ζ : ζ = b1 + b2i1 + b3i2 + b4i1i2, b1, b2, b3, b4 ∈ C0},
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i.e.,

C2 = {ζ : ζ = z + i2w, z, w ∈ C1}

where z = b1 + b2i1 ∈ C1 and w = b3 + b4i1 ∈ C1.

If ζ = z+i2w and γ = u+i2v then ζ±γ = (z+i2w)±(u+i2v) = (z±u)+i2(w±v)
and the product is ζ.γ = (z + i2w).(u+ i2v) = (zu− wv) + i2(zv + wu).

The norm ∥.∥ : C2 → C+
0 is

defined by

∥ζ∥ = ∥z + i2w∥ ={|z|2 + |w|2} 1
2 = (b21 + b22 + b23 + b24)

1
2

where ζ = b1 + b2i1 + b3i2 + b4i1i2 = z + i2w ∈ C2

The partial order relation ⪯i2 on C2 is defined as:

Let ζ = z + i2w, γ = u+ i2v ∈ C2 then

ζ ⪯i2 γ if and only if z ⪯ u and w ⪯ v.

i.e., ζ ⪯i2 γ if :

(1) z = u, w = v or

(2) z ≺ u, w = v or

(3) z = u, w ≺ v or

(4) z ≺ u, w ≺ v.

For any two bicomplex numbers ζ, γ ∈ C2 :

(i) ζ ⪯i2 γ =⇒ ∥ζ∥ ≤ ∥γ∥
(ii) ∥ζ + γ∥ ≤ ∥ζ∥+ ∥γ∥

1.4.1 Definition: [106] Let X be a nonempty set. Then the mapping

d : X × X → C2 is said to be bicomplex-valued metric on X if it satisfies the

following conditions:

(1) 0 ⪯i2 d(z, w) for all z,w ∈ X,

(2) d(z, w) = 0 if and only if z = w,

(3) d(z, w) = d(w, z) for all z,w ∈ X and

(4) d(z, w) ⪯i2 d(z, u) + d(u,w) for all z,w,u ∈ X.

Then (X, d) is called the bicomplex valued metric space.
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Let (X, d) be a bicomplex valued metric space. Then

1.4.2 Definition: [106]

(1) we say that a sequence {wn} in X converges to a point w if for any

0 ≺i2 r ∈C2 there exists n0 ∈ N such that d(wn, w) ≺i2 r, for all n > n0 and

we write limn→∞wn = w.

(2) we say that a sequence {wn} in X is a Cauchy sequence if for any 0 ≺i2 r ∈C2

there exists n0 ∈ N such that d(wn, wn+m)≺i2 r, for all m,n ∈ N and n > n0.

(3) we say that (X, d) is complete bicomplex valued metric space if every Cauchy

sequence in X is convergent in X.

1.4.3 Definition: We say that two maps h, k : X → X are commutes if

hk(z) = kh(z) for all z ∈ X.

1.4.4 Definition: We say that two maps h, k : X → X are compatible

mappings if limn→∞ d(hkzn, khzn) = 0 whenever {zn} be any sequence in X such

that limn→∞ hzn = limn→∞ kzn = z for some z ∈ X.

In 1998, Jungck and Rhoades [112] introduced the concept of weakly

compatible mappings and proved fixed point theorems using these mappings on

metric spaces.

1.4.5 Definition: We say that two maps h, k : X → X are weakly compatible if

hz = kz for some z ∈ X implies hk(z) = kh(z).

1.4.6 Definition: Let h,k,A,B : X → X are four maps. We say that {h,A}
and {k,B} are satisfy the CLRAB property if there exists two sequences {zn} and

{wn} in X such that limn→∞ hzn = limn→∞Azn = limn→∞ kwn = limn→∞Bwn =

z for some z ∈ A(X)∩B(X).

In 1996, S.S.Chang and et al. [113] introduced the coupled fixed point as

follows.

1.4.7 Definition: An element (ξ, ϑ) ∈ X ×X is called a coupled fixed point of

the mapping h : X ×X → X if h(ξ, ϑ) = ξ and h(ϑ, ξ) = ϑ.

1.4.8 Definition: [107] Let {zn} be any sequence in (X, d). Then we say that

{zn} is converges to a point z if and only if limn→∞ ∥d(zn, z)∥ = 0.
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1.5 A brief summary

The main work in this thesis centers around the development of various

contractions for self maps on S-metric spaces, Sb-metric spaces and bicomplex

valued metric spaces. We investigate existence of fixed and common fixed points

of maps for such contractions. Our results extend, unify and generalize several

known results as well. The work of this thesis is organized in six chapters.

The first chapter is introductory and present a background material needed for

the rest of the chapters.

In second chapter, we define an (ψ, ϕ) - almost weakly generalized

contractive map in S-metric spaces and prove the following theorem for an

existence and uniqueness of fixed point of such maps. Furthermore we deduce

some results as corollaries to our result and provide an example to validate our

result.

1.5.1 Definition: Let (X, S) be an S-metric space. A map h:X → X is called

(ψ, ϕ) - almost weakly generalized contractive if it satisfies the inequality

ψ(S(hξ, hϑ, hw)) ≤ ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w)) + L.θ(ξ, ϑ, w)

for all ξ, ϑ, w ∈ X, ψ ∈ Ψ, ϕ ∈ Φ and L ≥ 0, where

M(ξ, ϑ, w) = max{S(ξ, ϑ, w), S(ξ, ξ, hξ), S(ϑ, ϑ, hϑ), 1
2
[S(ξ, ξ, hϑ) + S(ϑ, ϑ, hξ)]},

θ(ξ, ϑ, w) = min{S(ξ, ξ, hξ), S(ϑ, ϑ, hϑ), S(w,w, hξ), S(ξ, ξ, hw)}.

1.5.2 Theorem: Let (X, S) be a complete S-metric space and h: X → X be

a (ψ, ϕ) - almost weakly generalized contractive mapping. Then h has a unique

fixed point in X.

The intent of the third chapter is to present the following fixed point theorem

by defining generalized Zs-contractions in relation to the simulation function in

S-metric space. In addition to that, we bestow an example which supports our

results.
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1.5.3 Lemma: If h : X → X is a generalized Zs-contraction in relation to γ,

then h is an asymptotically regular at each point ξ ∈ X.

1.5.4 Lemma: If h is a generalized Zs-contraction in relation to γ, then the

Picard sequence {ξn} generated by h such that hξn−1 = ξn, to each n∈N with

initial value ξ0 ∈ X is a bounded sequence.

1.5.5 Theorem: Let (X, S) be a complete S-metric space and h : X → X

be a self-mapping. If h is a generalized Zs-contraction in relation to γ, then h has

a unique fixed point η ∈ X and the Picard sequence {ξn} converges to the fixed

point η.

In Chapter - IV of the thesis, we define (ψ, ϕ) - weakly generalized contractive

map in Sb-metric spaces and prove the following theorem for an existence and

uniqueness of fixed point. We also give an example to support of our result.

1.5.6 Definition: Let (X, Sb) be an Sb-metric space for s≥1. Let h be a self

map of X. Then we say h is a (ψ, ϕ) - weakly generalized contractive map if

∃ L≥0, ψ ∈ Ψ and ϕ ∈ Φ such that

ψ(4s4Sb(hξ, hϑ, hw)) ≤ ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)) + L.Q(ξ, ϑ, w)

where P(ξ, ϑ, w) = max{Sb(ξ, ϑ, w), Sb(ξ, ξ, hξ), Sb(ϑ, ϑ, hϑ), Sb(w,w, hw),

1
4s2

[Sb(hξ, hϑ, hw) + Sb(hξ, hξ, ξ)Sb(hξ, hξ, w)Sb(hw, hw, ϑ)]}
and Q(ξ, ϑ, w) = min{Sb(hw, ξ, ξ), Sb(hξ, ϑ, ϑ), Sb(hξ, w, w), Sb(hξ, ϑ, w)}
∀ξ, ϑ, w ∈ X.

1.5.7 Theorem: Let h be a self map on a complete symmetric Sb-metric space

(X, Sb) for s≥1. If h is a (ψ, ϕ) - weakly generalized contractive map, then h has

a unique fixed point in X.

In Chapter - V of the thesis, we establish the following fixed point and

common fixed-point theorems in Sb-metric spaces using implicit relation. The

results presented in this paper extend and generalize several results from the

existing literature.
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1.5.8 Definition(Implicit Relation): Let Ψ be the family of all real valued

continuous functions ψ : R5
+ → R+ non-decreasing in the first argument for five

variables. For some q ∈ [0, 1
s2
], where s ≥1, we consider the following conditions.

(R1) For ξ, ϑ ∈ R+, if ξ ≤ ψ(ϑ, sξ, sϑ, sξ, ξ + sϑ) then ξ ≤ qϑ.

(R2) For ξ, ϑ ∈ R+, if ξ ≤ ψ(0, 0, ξ, 0, 0) then ξ = 0.

(R3) For ξ ∈ R+, if ξ ≤ ψ(ξ, 0, 0, 0, ξ
2
) then ξ = 0.

1.5.9 Theorem: Let T be a self map on a complete Sb-metric space (X, Sb)

with s ≥ 1 and

Sb(Tξ, Tϑ, Tw) ≤ ψ(Sb(ξ, ϑ, w), Sb(ϑ, ϑ, Tξ), Sb(w,w, Tw), Sb(ξ, ξ, Tϑ),

1

2s
[Sb(ϑ, ϑ, Tϑ) + Sb(w,w, Tξ)])

for all ξ, ϑ, w ∈ X and ψ ∈ Ψ. If ψ satisfies the conditions (R1), (R2) and (R3),

then T has a unique fixed point in X.

1.5.10 Theorem: Let T1 and T2 be two self maps on a complete Sb-metric space

(X, Sb) with s ≥ 1 and

Sb(T1ξ, T1ϑ, T2w) ≤ ψ(Sb(ξ, ϑ, w), Sb(ϑ, ϑ, T1ξ), Sb(w,w, T2w),

Sb(ξ, ξ, T1ϑ),
1

2s
[Sb(ϑ, ϑ, T1ϑ) + Sb(w,w, T1ξ)])

for all ξ, ϑ, w ∈ X and ψ ∈ Ψ. If ψ satisfies the conditions (R1), (R2) and (R3),

then T1 and T2 have a unique common fixed point in X.

1.5.11 Theorem: Let T1 and T2 be two continuous self maps on a complete

Sb-metric space (X, Sb) with s ≥ 1 and

Sb(T
p
1 ξ, T

p
1 ϑ, T

q
2w) ≤ ψ(Sb(ξ, ϑ, w), Sb(ϑ, ϑ, T

p
1 ξ), Sb(w,w, T

q
2w),

Sb(ξ, ξ, T
p
1 ϑ),

1

2s
[Sb(ϑ, ϑ, T

p
1 ϑ) + Sb(w,w, T

p
1 ξ)])

for all ξ, ϑ, w ∈ X, where p and q are integers and ψ ∈ Ψ. If ψ satisfies the

conditions (R1), (R2) and (R3), then T1 and T2 have a unique common fixed

point in X.
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1.5.12 Theorem: Let {Gα} be a family of continuous self maps on a complete

Sb-metric space (X, Sb) with s ≥ 1 and

Sb(Gαξ,Gαϑ,Gβw) ≤ ψ(Sb(ξ, ϑ, w), Sb(ϑ, ϑ,Gαξ), Sb(w,w,Gβw),

Sb(ξ, ξ, Gαϑ),
1

2s
[Sb(ϑ, ϑ,Gαϑ) + Sb(w,w,Gαξ)])

for all ξ, ϑ, w ∈ X and α, β ∈ R+ with α ̸= β. Then there exists a unique η ∈ X

satisfying Gαη = η, for all α ∈ Ψ.

In Chapter VI of the thesis, we establish the following two unique common fixed

point theorems for four self-mappings and six self-mappings and a common

coupled fixed point theorem in the bicomplex valued metric space. In the first

theorem, we establish a common fixed point theorem for four self-mappings by

using weaker conditions such as weakly compatibility, generalized contraction and

CLRAB property. Then, in the Second theorem, we establish a common fixed point

theorem for six self-mappings with the help of weakly compatibility and inclusion

relations by using the generalized contraction. Further, in the third theorem, we

establish a common coupled fixed point theorem using a different contraction in

the bicomplex valued metric space.

1.5.13 Theorem: Let (X, d) be a complete bicomplex valued metric space and

h,k,A and B are self mappings on X satisfying

(i) d(hϖ, kϑ) ⪯i2 τ1d(Aϖ,Bϑ) + τ2d(Aϖ, hϖ) + τ3d(Bϑ, kϑ), ∀ϖ,ϑ ∈ X,

where τ1,τ2 and τ3 be non negative real number such that τ1 + τ2 + τ3 < 1.

(ii) {B, k} and {A, h} be weakly compatible,

(iii) {B, k} and {A, h} satisfy CLRAB property.

Then h,k,A and B have a unique common fixed point in X.

1.5.14 Theorem: Let (X, d) be a complete bicomplex valued metric space

and H,I,C,P,Q,R be the self mappings on X satisfies (i) H(X) ⊇ QR(X) and

I(X)⊇ CP(X) (ii) d(CPϖ,QRϑ)⪯i2 τ1d(Hϖ, Iϑ)+τ2d(Hϖ,CPϖ)+τ3d(Iϑ,QRϑ)

+ τ4d(Hϖ,QRϑ) for all ϖ,ϑ ∈ X, where τ1,τ2,τ3 and τ4 be non negative real

number such that τ1+τ2+τ3+2τ4 < 1. (iii) Suppose (QR,I) and (CP,H) are weakly

compatible and (iv) (Q,R), (Q,I), (R,I),(C,P),(C,H) and (P,H) are pairs of

commuting maps. Then Q,R,C,P,I and H have a unique common fixed point

in X.
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1.5.15 Theorem: Let (X, d) be a complete bicomplex valued metric space and

h,k : X × X → X be two functions satisfy

d(h(ϖ, ȷ), k(ρ, σ)) ⪯i2 τ1
d(ϖ,ρ)+d(ȷ,σ)

2
+ τ2

d(ϖ,h(ϖ,ȷ))+d(ρ,ϖ)
2

+ τ3
d(ϖ,h(ϖ,ȷ))+d(ρ,k(ρ,σ))

2

where ϖ, ȷ, ρ, σ ∈ X and τ1, τ2 and τ3 are non negative integers such that

τ1 + τ2 + τ3 < 1. Then h and k have a unique common coupled fixed point

in X × X.
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Chapter 2

Fixed point results for (ψ, ϕ)-
generalized almost weakly
contractive maps in S-metric
spaces
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2.1 Introduction:

A (ψ, ϕ)- almost weakly generalized contractive map is defined in this chapter.

The existence and uniqueness of the fixed point of such maps are demonstrated

in S-metric spaces. Also we deduce some existing results as special cases of our

result. Moreover, we give an example in support of the results.

Dutta et al. [85] introduced (ψ, ϕ) - weakly contractive maps in 2008 and

obtained some fixed point results for such contractions in metric spaces. Later, for

weakly contractive maps in G-metric spaces, Al-Sharif, Khandaqji and Al-Khaleel

[111] established the following theorem in 2012.

2.1.1 Theorem: [111] Let h be a self map on a complete G-metric space

(X, G). If ψ ∈ Ψ and ϕ ∈ Φ so that

ψ(G(hξ, hϑ, hw)) ≤ ψ(max{G(ξ, ϑ, w), G(ξ, hξ, hξ), G(ϑ, hϑ, hϑ), G(w, hw, hw),

αG(hξ, hξ, ϑ) + (1− α)G(hϑ, hϑ, w), βG(ξ, hξ, hξ)

+ (1− β)G(ϑ, hϑ, hϑ)})− ϕ(max{G(ξ, ϑ, w), G(ξ, hξ, hξ),

G(ϑ, hϑ, hϑ), G(w, hw, hw), αG(hξ, hξ, ϑ)

+ (1− α)G(hϑ, hϑ, w), βG(ξ, hξ, hξ) + (1− β)G(ϑ, hϑ, hϑ)})

for all ξ, ϑ, w ∈X, here α, β ∈ (0, 1), then h has one and only one fixed point, say

u ∈ X and G-continuous at u.

We now provide the following (ψ, ϕ)- almost weakly generalized contractive map

in S-metric spaces along with an illustration.

2.1.2 Definition: Consider a self map h on an S-metric space (X, S). We say

that h is (ψ, ϕ) - almost weakly generalized contractive map if

ψ(S(hξ, hϑ, hw)) ≤ ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w)) + L.θ(ξ, ϑ, w) (2.1.1.)

for all ξ, ϑ, w ∈ X, ψ ∈ Ψ, ϕ ∈ Φ and L ≥ 0, where

M(ξ, ϑ, w) = max{S(ξ, ϑ, w), S(ξ, ξ, hξ), S(ϑ, ϑ, hϑ), 1
2
[S(ξ, ξ, hϑ) + S(ϑ, ϑ, hξ)]},

θ(ξ, ϑ, w) = min{S(ξ, ξ, hξ), S(ϑ, ϑ, hϑ), S(w,w, hξ), S(ξ, ξ, hw)}.
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2.1.3 Example: Let X = [0, 8
7
] and define h : X → X by

hξ =

{
ξ
10

when ξ ∈ [0, 1]

ξ − 4
5

when ξ ∈ (1, 8
7
]

.

We define S: X3 → [0,∞) by S(ξ, ϑ, w) = |ξ − w| + |ϑ − w| for all ξ, ϑ, w ∈ X.

Clearly (X, S) is definitely a complete S-metric space.

Functions ψ, ϕ : [0,∞) → [0,∞) are defined by

ψ(υ) = υ, ∀υ ≥ 0 and ϕ(υ) =

{
υ
2

when υ ∈ [0, 1]
υ

υ+1
when υ ≥ 1.

.

Now, verify that h holds the inequality (2.1.1.).

Case(i): Let ξ, ϑ, w ∈ [0,1].

We suppose that ξ > ϑ > w, w.l.o.g.,

S(hξ, hϑ, hw) = S( ξ
10
, ϑ
10
, w
10
) = 1

10
(|ξ − w|+ |ϑ− w|) and

S(ξ, ϑ, w) = |ξ − w|+ |ϑ− w|.
Subcase (a): If |ξ − w|+ |ϑ− w| ∈ [0, 1].

In this case,

S(hξ, hϑ, hw) =
1

10
(|ξ − w|+ |ϑ− w|) ≤ 1

2
(|ξ − w|+ |ϑ− w|)

=
1

2
S(ξ, ϑ, w) ≤ 1

2
M(ξ, ϑ, w)

=M(ξ, ϑ, w)− 1

2
M(ξ, ϑ, w)

= ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w))

≤ ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w)) + L.θ(ξ, ϑ, w).

Subcase(b): If |ξ − ϑ|+ |ϑ− w| ≥1.

In this case,

S(hξ, hϑ, hw) =
1

10
(|ξ − ϑ|+ |ϑ− w|) ≤ |ξ − ϑ|+ |ϑ− w| − |ξ − ϑ|+ |ϑ− w|

1 + |ξ − ϑ|+ |ϑ− w|

= S(ξ, ϑ, w)− S(ξ, ϑ, w)

1 + S(ξ, ϑ, w)

=
(S(ξ, ϑ, w))2

1 + S(ξ, ϑ, w)
≤ (M(ξ, ϑ, w))2

1 +M(ξ, ϑ, w)

=M(ξ, ϑ, w)− M(ξ, ϑ, w)

1 +M(ξ, ϑ, w)

= ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w))

≤ ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w)) + L.θ(ξ, ϑ, w).

Case(ii): Let ξ, ϑ, w ∈ (1, 8
7
].
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We suppose that ξ > ϑ > w, w.l.o.g.,

S(hξ, hϑ, hw) = S(ξ − 4

5
, ϑ− 4

5
, w − 4

5
) = |ξ − w|+ |ϑ− w|

≤ 2

7
≤ 64

65
=

8

5
− 8

13
= S(ξ, ξ, hξ)− S(ξ, ξ, hξ)

1 + S(ξ, ξ, hξ)

=
(S(ξ, ξ, hξ))2

1 + S(ξ, ξ, hξ)
≤ (M(ξ, ϑ, w))2

1 +M(ξ, ϑ, w)

=M(ξ, ϑ, w)− M(ξ, ϑ, w)

1 +M(ξ, ϑ, w)

= ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w))

≤ ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w)) + L.θ(ξ, ϑ, w).

Case(iii): Let ϑ,w ∈ [0, 1] and ξ ∈ (1, 8
7
].

We suppose that ϑ > w, w.l.o.g.,

S(hξ, hϑ, hw) = S(ξ − 4

5
,
ϑ

10
,
w

10
) = |ξ − 4

5
− w

10
|+ | ϑ

10
− w

10
|

= ξ − w

10
− 4

5
+
ϑ− w

10
= ξ +

ϑ

10
− w

5
− 4

5

=
31

70
≤ 64

65
=

8

5
− 8

13
= S(ξ, ξ, hξ)− S(ξ, ξ, hξ)

1 + S(ξ, ξ, fξ)

=
(S(ξ, ξ, hξ))2

1 + S(ξ, ξ, hξ)
≤ (M(ξ, ϑ, w))2

1 +M(ξ, ϑ, w)

=M(ξ, ϑ, w)− M(ξ, ϑ, w)

1 +M(ξ, ϑ, w)

= ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w))

≤ ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w)) + L.θ(ξ, ϑ, w).

Case(iv): Let w∈ [0, 1] and ξ, ϑ ∈ (1, 8
7
].

We suppose that ξ > ϑ, w.l.o.g.,

S(hξ, hϑ, hw) = S(ξ − 4

5
, ϑ− 4

5
,
w

10
) = |ξ − 4

5
− w

10
|+ |ϑ− 4

5
− w

10
|

= ξ + ϑ− w

5
− 8

5
=

12

35
≤ 64

65
=

8

5
− 8

13

= S(ϑ, ϑ, hϑ)− S(ϑ, ϑ, hϑ)

1 + S(ϑ, ϑ, hϑ)

=
(S(ϑ, ϑ, hϑ))2

1 + S(ϑ, ϑ, hϑ)
≤ (M(ξ, ϑ, w))2

1 +M(ξ, ϑ, w)

=M(ξ, ϑ, w)− M(ξ, ϑ, w)

1 +M(ξ, ϑ, w)

= ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w))

≤ ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w)) + L.θ(ξ, ϑ, w).
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Case (v): Let ξ, ϑ ∈ [0, 1] and w ∈ (1, 8
7
].

We suppose that ξ > ϑ, w.l.o.g.,

S(hξ, hϑ, hw) = S(
ξ

10
,
ϑ

10
, w − 4

5
) = | ξ

10
− w +

4

5
|+ | ϑ

10
− w +

4

5
|

= |4
5
− (w − ξ

10
)|+ |4

5
− (w − ϑ

10
)| = w − ξ

10
− 4

5
+ w − ϑ

10
− 4

5

= 2w − ξ + ϑ

10
− 8

5
=

41

70
≤ 64

65
=

8

5
− 8

13

= S(ξ, ξ, hξ)− S(ξ, ξ, hξ)

1 + S(ξ, ξ, hξ)

=
(S(ξ, ξ, hξ))2

1 + S(ξ, ξ, hξ)
≤ (M(ξ, ϑ, w))2

1 +M(ξ, ϑ, w)

=M(ξ, ϑ, w)− M(ξ, ϑ, w)

1 +M(ξ, ϑ, w)

= ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w))

≤ ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w)) + L.θ(ξ, ϑ, w).

Case (vi): Let ξ ∈ [0, 1] and w, ϑ ∈ (1, 8
7
].

We suppose that w > ϑ, w.l.o.g.,

S(hξ, hϑ, hw) = S(
ξ

10
, ϑ− 4

5
, w − 4

5
) = | ξ

10
− w +

4

5
|+ |ϑ− w|

= w − ξ

10
− 4

5
+ w − ϑ = 2w − ξ

10
− 4

5
− ϑ

≤ 27

70
≤ 64

65
=

8

5
− 8

13
= S(ϑ, ϑ, hϑ)− S(ϑ, ϑ, hϑ)

1 + S(ϑ, ϑ, hϑ)

=
(S(ϑ, ϑ, hϑ))2

1 + S(ϑ, ϑ, hϑ)
≤ (M(ξ, ϑ, w))2

1 +M(ξ, ϑ, w)

=M(ξ, ϑ, w)− M(ξ, ϑ, w)

1 +M(ξ, ϑ, w)

= ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w))

≤ ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w)) + L.θ(ξ, ϑ, w).

We showed that h is a (ψ, ϕ) - almost weakly generalized contractive map on X

from all the cases mentioned above.

2.1.4 Lemma: [84] Let {ξℓ} be a sequence in an S-metric space (X, S) so that

limℓ→∞ S(ξℓ, ξℓ, ξℓ+1) = 0. If {ξℓ} is not a Cauchy, we can find an ϵ > 0 and

two sequences {mσ} and {ℓσ} of natural numbers with σ < mσ < ℓσ so that

S(ξmσ , ξmσ , ξℓσ) ≥ ϵ, S(ξmσ−1, ξmσ−1, ξℓσ) < ϵ and

(i)limσ→∞ S(ξmσ , ξmσ , ξℓσ) = ϵ. (ii) limσ→∞ S(ξmσ−1, ξmσ−1, ξℓσ) = ϵ.

(iii) limσ→∞ S(ξmσ , ξmσ , ξℓσ−1) = ϵ. (iv) limσ→∞ S(ξmσ−1, ξmσ−1, ξℓσ−1) = ϵ.
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2.2 Main Results and Examples

Through this section we establish a fixed point theorem using the

(ψ, ϕ) - almost weakly generalized contractive maps. Further, we derive some

corollaries and bestow example to our result.

2.2.1 Theorem: Let h:X → X be a function on a complete S-metric space

(X, S) and be a (ψ, ϕ) - almost weakly generalized contractive map. Then h has

one and only one fixed point.

Proof: Consider an arbitrary ξ0 ∈ X. We establish a sequence {ξℓ} such that

hξℓ = ξℓ+1, for ℓ = 0,1,2,....

If for some ℓ ∈ N, ξℓ = ξℓ+1, then ξℓ is a fixed point of h.

Suppose ξℓ ̸= ξℓ+1, for all ℓ ∈ N.
Consider,

ψ(S(ξℓ+1, ξℓ+1, ξℓ)) = ψ(S(hξℓ, hξℓ, hξℓ−1))

≤ ψ(max{S(ξℓ, ξℓ, ξℓ−1), S(ξℓ, ξℓ, hξℓ), S(ξℓ, ξℓ, hξℓ),

1

2
[S(ξℓ, ξℓ, hξℓ) + S(ξℓ, ξℓ, hξℓ)]})

− ϕ(max{S(ξℓ, ξℓ, ξℓ−1), S(ξℓ, ξℓ, hξℓ), S(ξℓ, ξℓ, hξℓ),

1

2
[S(ξℓ, ξℓ, hξℓ) + S(ξℓ, ξℓ, hξℓ)]})

+ L.min{S(ξℓ, ξℓ, hξℓ), S(ξℓ, ξℓ, hξℓ), S(ξℓ−1, ξℓ−1, hξℓ), S(ξℓ, ξℓ, hξℓ−1)}

= ψ(max{S(ξℓ, ξℓ, ξℓ−1), S(ξℓ, ξℓ, ξℓ+1)})− ϕ(max{S(ξℓ, ξℓ, ξℓ−1),

S(ξℓ, ξℓ, ξℓ+1)}) + L.0

If max{S(ξℓ, ξℓ, ξℓ+1), S(ξℓ, ξℓ, ξℓ−1)} = S(ξℓ, ξℓ, ξℓ+1), then we get

ψ(S(ξℓ+1, ξℓ+1, ξℓ)) ≤ ψ(S(ξℓ+1, ξℓ+1, ξℓ))− ϕ(S(ξℓ+1, ξℓ+1, ξℓ))

that is, ϕ(S(ξℓ+1, ξℓ+1, ξℓ)) ≤ 0, which implies that S(ξℓ+1, ξℓ+1, ξℓ) = 0. Then we

get ξℓ+1 = ξℓ, which is a contradiction to our assumption that ξℓ ̸= ξℓ+1, for each

ℓ.

Therefore, max{S(ξℓ, ξℓ, ξℓ+1), S(ξℓ, ξℓ, ξℓ−1)} = S(ξℓ, ξℓ, ξℓ−1),

and so we get

ψ(S(ξℓ+1, ξℓ+1, ξℓ)) ≤ ψ(S(ξℓ, ξℓ, ξℓ−1))− ϕ(S(ξℓ, ξℓ, ξℓ−1)) (2.2.1.)
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that is, ψ(S(ξℓ+1, ξℓ+1, ξℓ)) ≤ ψ(S(ξℓ, ξℓ, ξℓ−1)).

Therefore we get, S(ξℓ+1, ξℓ+1, ξℓ) ≤ S(ξℓ, ξℓ, ξℓ−1), for all ℓ and the sequence

{S(ξℓ+1, ξℓ+1, ξℓ)} is bounded and decreasing. So, we can find p ≥ 0 so that

lim
ℓ→∞

S(ξℓ+1, ξℓ+1, ξℓ) = p.

Letting ℓ→ ∞ in equation (2.2.1.), we get

ψ(p) ≤ ψ(p)− ϕ(p),

This, unless p = 0, is a contradiction.

Hence,

lim
ℓ→∞

S(ξℓ+1, ξℓ+1, ξℓ) = 0. (2.2.2.)

Now, we claim that {ξℓ} is a Cauchy sequence. Suppose not, we can have a ϵ > 0

to which we can discover increasing sequences of integers {mσ} and {ℓσ} and

sub sequences {ξm(σ)} and {ξℓ(σ)} of {ξℓ} so that ℓ(σ) is the least index to which

ℓ(σ) > m(σ) > σ,

S(ξm(σ), ξm(σ), ξℓ(σ)) ≥ ϵ (2.2.3.)

Then, we have

S(ξm(σ), ξm(σ), ξℓ(σ)−1) < ϵ (2.2.4.)

Now,

ϵ ≤ S(ξm(σ), ξm(σ), ξℓ(σ)) = S(ξℓ(σ), ξℓ(σ), ξm(σ))

≤ 2S(ξℓ(σ), ξℓ(σ), ξℓ(σ)−1) + S(ξm(σ), ξm(σ), ξℓ(σ)−1)

≤ ϵ+ 2S(ξℓ(σ), ξℓ(σ), ξℓ(σ)−1) (Using equation (2.2.4))

Letting σ → ∞, we get

lim
σ→∞

S(ξm(σ), ξm(σ), ξℓ(σ)) = ϵ. (2.2.5.)

Also,

S(ξm(σ), ξm(σ), ξℓ(σ)) ≤ 2S(ξm(σ), ξm(σ), ξm(σ)−1) + S(ξℓ(σ), ξℓ(σ), ξm(σ)−1)

≤ 2S(ξm(σ), ξm(σ), ξm(σ)−1) + 2S(ξℓ(σ), ξℓ(σ), ξℓ(σ)−1)

+ S(ξm(σ)−1, ξm(σ)−1, ξℓ(σ)−1) (2.2.6.)

and

S(ξm(σ)−1, ξm(σ)−1, ξℓ(σ)−1) ≤ 2S(ξm(σ)−1, ξm(σ)−1, ξm(σ)) + S(ξℓ(σ)−1, ξℓ(σ)−1, ξm(σ))

= 2S(ξm(σ), ξm(σ), ξm(σ)−1) + S(ξm(σ), ξm(σ), ξℓ(σ)−1) (2.2.7.)
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Taking σ → ∞ in equation (2.2.7.) and utilizing equations (2.2.2.), (2.2.4.),

(2.2.5.) and (2.2.6.)

we get

lim
σ→∞

S(ξm(σ)−1, ξm(σ)−1, ξℓ(σ)−1) = ϵ (2.2.8.)

Setting ξ = ξm(σ)−1, ϑ = ξm(σ)−1 and w = ξℓ(σ)−1 in equation (2.1.1.), we get

ψ(ϵ) ≤ ψ(S(ξm(σ), ξm(σ), ξℓ(σ))) = ψ(S(hξm(σ)−1, hξm(σ)−1, hξℓ(σ)−1))

≤ ψ(max{S(ξm(σ)−1, ξm(σ)−1, ξℓ(σ)−1), S(ξm(σ)−1, ξm(σ)−1, hξm(σ)−1),

S(ξm(σ)−1, ξm(σ)−1, hξm(σ)−1),
1

2
[S(ξm(σ)−1, ξm(σ)−1, hξm(σ)−1)

+ S(ξm(σ)−1, ξm(σ)−1, hξm(σ)−1)]})

− ϕ(max{S(ξm(σ)−1, ξm(σ)−1, ξℓ(σ)−1), S(ξm(σ)−1, ξm(σ)−1, hξm(σ)−1),

S(ξm(σ)−1, ξm(σ)−1, hξm(σ)−1),
1

2
[S(ξm(σ)−1, ξm(σ)−1, hξm(σ)−1)

+ S(ξm(σ)−1, ξm(σ)−1, hξm(σ)−1)]})

+ L.min{S(ξm(σ)−1, ξm(σ)−1, hξm(σ)−1), S(ξm(σ)−1, ξm(σ)−1, hξm(σ)−1),

S(ξℓ(σ)−1, ξℓ(σ)−1, hξm(σ)−1), S(ξm(σ)−1, ξm(σ)−1, hξℓ(σ)−1)}

Taking σ → ∞ and utilizing equation (2.2.8.), we obtain

ψ(ϵ) ≤ ψ(max{ϵ, 0, 0, 0})− ϕ(max{ϵ, 0, 0, 0}) + L.min{0, 0, 0, ϵ}

ψ(ϵ) ≤ ψ(ϵ)− ϕ(ϵ) + L.0

As ϵ > 0, this will become contradiction. This proves that {ξℓ} becomes a Cauchy

in X and since X is complete, we can find a τ ∈ X so that {ξℓ} → τ as ℓ→ ∞.

Now we prove that hτ = τ.

Put ξ = ξℓ, ϑ = ξℓ and w = τ in equation (2.1.1.), then we have

ψ(S(ξℓ+1, ξℓ+1, hτ)) = ψ(S(hξℓ, hξℓ, hτ))

≤ ψ(max{S(ξℓ, ξℓ, τ), S(ξℓ, ξℓ, hξℓ), S(ξℓ, ξℓ, hξℓ),
1

2
[S(ξℓ, ξℓ, hξℓ) + S(ξℓ, ξℓ, hξℓ)]})

− ϕ(max{S(ξℓ, ξℓ, τ), S(ξℓ, ξℓ, hξℓ), S(ξℓ, ξℓ, hξℓ),
1

2
[S(ξℓ, ξℓ, hξℓ) + S(ξℓ, ξℓ, hξℓ)]})

+ L.min{S(ξℓ, ξℓ, hξℓ), S(ξℓ, ξℓ, hξℓ), S(τ, τ, hξℓ), S(ξℓ, ξℓ, hτ)}

Letting ℓ→ ∞, we get

ψ(S(τ, τ, hτ)) ≤ ψ(S(τ, τ, τ))− ϕ(S(τ, τ, τ)+L.0
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ψ(S(τ, τ, hτ)) ≤ 0. So, we get S(τ, τ, hτ)=0.

Therefore hτ = τ . That is τ is a fixed point of h.

To show τ is unique, consider ℓ be another fixed point of h.

Using equation (2.1.1.), we consider

ψ(S(τ,τ, ℓ)) = ψ(S(hτ, hτ, hℓ))

≤ ψ(max{S(τ, τ, ℓ), S(τ, τ, hτ), S(τ, τ, hτ), 1
2
[S(τ, τ, hτ) + S(τ, τ, hτ)]})

− ϕ(max{S(τ, τ, ℓ), S(τ, τ, hτ), S(τ, τ, hτ), 1
2
[S(τ, τ, hτ) + S(τ, τ, hτ)]})

+ L.min{S(τ, τ, hτ), S(τ, τ, hτ), S(ℓ, ℓ, hτ), S(τ, τ, hℓ)}

That is, ψ(S(τ, τ, ℓ)) ≤ ψ(S(τ, τ, ℓ))− ϕ(S(τ, τ, ℓ)),

a contradiction, unless S(τ, τ, ℓ) = 0. Hence we get τ = ℓ.

Hence h has one and only one fixed point τ in X.

In Theorem 2.2.1., if we substitute L=0, then we get the following.

2.2.2 Corollary: Let h:X → X be a function on a complete S-metric space

(X, S). Suppose ψ ∈ Ψ and ϕ ∈ Φ so that

S(hξ, hϑ, hw) ≤ ψ(max{S(ξ, ϑ, w), S(ξ, ξ, hξ), S(ϑ, ϑ, hϑ), 1
2
[S(ξ, ξ, hϑ)

+ S(ϑ, ϑ, hξ)]})− ϕ(max{S(ξ, ϑ, w), S(ξ, ξ, hξ), S(ϑ, ϑ, hϑ),
1

2
[S(ξ, ξ, hϑ) + S(ϑ, ϑ, hξ)]}),

for all ξ, ϑ, w ∈ X. Then h has one and only one fixed point τ in X.

In the above Corollary (2.2.2.), if ψ is the identity map then we get the following.

2.2.3 Corollary: Let h:X → X be a function on a complete S-metric space

(X, S). Suppose there exists a ϕ ∈ Φ so that

S(hξ, hϑ,hw) ≤ max{S(ξ, ϑ, w), S(ξ, ξ, hξ), S(ϑ, ϑ, hϑ), 1
2
[S(ξ, ξ, hϑ) + S(ϑ, ϑ, hξ)]}

− ϕ(max{S(ξ, ϑ, w), S(ξ, ξ, hξ), S(ϑ, ϑ, hϑ), 1
2
[S(ξ, ξ, hϑ) + S(ϑ, ϑ, hξ)]})

for all ξ, ϑ, w ∈ X. Then h has one and only one fixed point τ in X.
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The following illustration helps to support Theorem 2.2.1.

2.2.4 Example: Consider X = [0, 7
6
]. Define S:X3 → [0,∞) by

S(ξ, ϑ, w) = max{|ξ − w|, |ϑ− w|}, for all ξ, ϑ, w ∈ X.

Then clearly S is an S-metric on X.

Now, we define h:X → X by

hξ =

{
1
2

when ξ ∈ [0, 1]
4
3
− ξ when ξ ∈ (1, 7

6
]

.

ψ, ϕ : [0,∞) → [0,∞) are defined by

ψ(υ) = υ, ∀υ ≥ 0 and ϕ(υ) = υ
1+υ

∀υ ≥0.

Now we verify that h holds inequality (2.1.1.).

Case(i) Let ξ, ϑ, w ∈[0, 1].
We suppose that ξ > ϑ > w, w.l.o.g.,

S(hξ, hϑ, hw) = S(1
2
, 1
2
, 1
2
) = 0. Hence the inequality (2.1.1.) holds trivially.

Case(ii) Let ξ, ϑ, w ∈ (1, 7
6
].

We suppose that ξ > ϑ > w, w.l.o.g.,

S(hξ, hϑ, hw) = S(
4

3
− ξ,

4

3
− ϑ,

4

3
− w) = max{|4

3
− ξ − (

4

3
− w)|, |4

3
− ϑ− (

4

3
− w)|}

= max{|w − ξ|, |w − ϑ|} = ξ − w ≤ 1

6
≤ 4

15
=

2

3
− 2

5

≤ S(ξ, ξ, hξ)− S(ξ, ξ, hξ)

1 + S(ξ, ξ, hξ)
=

(S(ξ, ξ, hξ))2

1 + S(ξ, ξ, hξ)

≤ (M(ξ, ϑ, w))2

1 +M(ξ, ϑ, w)
=M(ξ, ϑ, w)− M(ξ, ϑ, w)

1 +M(ξ, ϑ, w)

= ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w))

≤ ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w)) + L.θ(ξ, ϑ, w).

Case(iii) Let ϑ,w ∈[0, 1] and ξ ∈ (1, 7
6
].

We suppose that ϑ > w, w.l.o.g.,

S(hξ, hϑ, hw) = S(
4

3
− ξ,

1

2
,
1

2
) = max{|4

3
− ξ − 1

2
|, |1

2
− 1

2
|}

= ξ − 5

6
≤ 1

6
≤ 4

15
=

2

3
− 2

5

≤ S(ξ, ξ, hξ)− S(ξ, ξ, hξ)

1 + S(ξ, ξ, hξ)
=

(S(ξ, ξ, hξ))2

1 + S(ξ, ξ, hξ)

≤ (M(ξ, ϑ, w))2

1 +M(ξ, ϑ, w)
=M(ξ, ϑ, w)− M(ξ, ϑ, w)

1 +M(ξ, ϑ, w)

= ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w))

≤ ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w)) + L.θ(ξ, ϑ, w).
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Case(iv) Let w ∈[0, 1] and ξ, ϑ ∈ (1, 7
6
].

We suppose that ϑ > ξ, w.l.o.g.,

S(hξ, hϑ, hw) = S(
4

3
− ξ,

4

3
− ϑ,

1

2
) = max{|4

3
− ξ − 1

2
|, |4

3
− ϑ− 1

2
|}

= max{|5
6
− ξ|, |5

6
− ϑ|} = ξ − 5

6
≤ 1

6
≤ 4

15
=

2

3
− 2

5

≤ S(ϑ, , ϑ, hϑ)− S(ϑ, , ϑ, hϑ)

1 + S(ϑ, , ϑ, hϑ)
=

(S(ϑ, , ϑ, hϑ))2

1 + S(ϑ, , ϑ, hϑ)

≤ (M(ξ, ϑ, w))2

1 +M(ξ, ϑ, w)
=M(ξ, ϑ, w)− M(ξ, ϑ, w)

1 +M(ξ, ϑ, w)

= ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w))

≤ ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w)) + L.θ(ξ, ϑ, w).

Case(v) Let ξ, ϑ ∈[0, 1] and w ∈ (1, 7
6
].

We suppose that ξ > ϑ, w.l.o.g.,

S(hξ, hϑ, hw) = (
1

2
,
1

2
,
4

3
− w) = max{|1

2
− (

4

3
− w)|, |1

2
− (

4

3
− w)|}

= w − 5

6
≤ 1

6
≤ 4

15
=

2

3
− 2

5

≤ S(ξ, ξ, hξ)− S(ξ, ξ, hξ)

1 + S(ξ, ξ, hξ)
=

(S(ξ, ξ, hξ))2

1 + S(ξ, ξ, hξ)

≤ (M(ξ, ϑ, w))2

1 +M(ξ, ϑ, w)
=M(ξ, ϑ, w)− M(ξ, ϑ, w)

1 +M(ξ, ϑ, w)

= ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w))

≤ ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w)) + L.θ(ξ, ϑ, w).

Case(vi) Let ξ ∈[0, 1] and ϑ,w ∈ (1, 7
6
].

We suppose that w > ϑ, w.l.o.g.,

S(hξ, hϑ, hw) = S(
1

2
,
4

3
− ϑ,

4

3
− w) = max{|1

2
− (

4

3
− w)|, |4

3
− ϑ− (

4

3
− w)|}

= max{w − 5

6
, |w − ϑ|} = w − 5

6
≤ 1

6
≤ 4

15
=

2

3
− 2

5

= S(ϑ, ϑ, hϑ)− S(ϑ, ϑ, hϑ)

1 + S(ϑ, ϑ, hϑ)
=

(S(ϑ, ϑ, hϑ))2

1 + S(ϑ, ϑ, hϑ)

≤ (M(ξ, ϑ, w))2

1 +M(ξ, ϑ, w)
=M(ξ, ϑ, w)− M(ξ, ϑ, w)

1 +M(ξ, ϑ, w)

= ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w))

≤ ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w)) + L.θ(ξ, ϑ, w).
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Case(vii) Let ϑ ∈[0, 1] and ξ, w ∈ (1, 7
6
].

We suppose that w > ξ, w.l.o.g.,

S(hξ, hϑ, hw) = S(
4

3
− ξ,

1

2
,
4

3
− w) = max{|4

3
− ξ − (

4

3
− w)|, |1

2
− (

4

3
− w)|}

= max{|w − ξ|, w − 5

6
} = w − 5

6
≤ 1

6
≤ 4

15
=

2

3
− 2

5

= S(ϑ, ϑ, hϑ)− S(ϑ, ϑ, hϑ)

1 + S(ϑ, ϑ, hϑ)
=

(S(ϑ, ϑ, hϑ))2

1 + S(ϑ, ϑ, hϑ)

≤ (M(ξ, ϑ, w))2

1 +M(ξ, ϑ, w)
=M(ξ, ϑ, w)− M(ξ, ϑ, w)

1 +M(ξ, ϑ, w)

= ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w))

≤ ψ(M(ξ, ϑ, w))− ϕ(M(ξ, ϑ, w)) + L.θ(ξ, ϑ, w).

We infer from all of the aforementioned cases that h will be a (ψ, ϕ) - almost

weakly generalized contractive map on X and that 1
2
is its only fixed point.
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Chapter 3

Fixed point results for Zs-
contractions in relation to
simulation function in S-metric
spaces
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3.1 Introduction:

We prove a fixed point theorem in this chapter by defining generalized

Zs -contractions in relation to the simulation function in an S-metric space. Satish

Shukla, F.Khajasteh and S.Radenovic [81] proposed the simulation

function and the notion of Z-contraction in relation to simulation function in 2015

and derived a fixed point theorem that generalizes the Banach

contraction principle. Very recently, Murat Olgun, O.Bicer and T.Alyildiz

[82] defined generalized Z-contraction in relation to the simulation function and

established a fixed point theorem. In the year 2019, Nihal Tas, Nihal Ylimaz

Ozgur and Nabil Mlaiki [83] proved a fixed point theorem by employing the

collection of simulation mappings on S-metric spaces.

We generalized the findings of Nihal Yilmaz Ozgur, Nihal Tas, and N.Mlaiki [83]

in this work. In addition, we provide an example that validates our findings.

3.1.1 Definition: [81] Consider the function γ : [0,∞) × [0,∞) → R . Then

γ is said to be a simulation function if

(γ1) γ(0, 0) = 0

(γ2) γ(a, b) < b− a, for a,b > 0

(γ3) If the sequences {an}, {bn} of (0,∞) so that limn→∞ an = limn→∞ bn > 0,

then limn→∞sup γ(an, bn) < 0.

We indicate Z as the collection of all simulation mappings. For example,

γ(a, b) = τb− a for 0 ≤ τ < 1 belonging to Z.

Nihal Tas, N.Y.Ozgur and Nabil Mlaiki [83] defined the Zs-contraction and proved

the following theorem .

3.1.2 Definition: [83] Consider a function h:X → X on an S-metric space

(X, S) and γ ∈ Z. Then we say h is a Zs-contraction in relation to γ if

γ(S(hξ, hξ, hϑ), S(ξ, ξ, ϑ)) ≥ 0 for all ξ, ϑ ∈ X.

3.1.3 Theorem: [83] Let h represent a self map on an S-metric space (X, S).

Then h has one and only one fixed point a∈ X and the fixed point is the limit of

the Picard sequence {ξn}, whenever h is a Zs-contraction in relation to γ.
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Now, we define generalized Zs-contraction in relation to γ as follows:

3.1.4 Definition: Consider h:X → X, a function on an S-metric space (X, S)

and γ ∈ Z. Then we say h is a generalized Zs-contraction in relation to γ if

γ(S(hξ, hξ, hϑ),M(ξ, ξ, ϑ)) ≥ 0 for all ξ, ϑ ∈ X (3.1.1)

whereM(ξ, ξ, ϑ) = max{S(ξ, ξ, ϑ), S(ξ, ξ, hξ), S(ϑ, ϑ, hϑ), 1
2
[S(ξ, ξ, hϑ)+S(ϑ, ϑ, hξ)]}

3.1.5 Example: Let h be a contraction on (X, S). If we take L∈[0, 1) and

γ(a, b) = L.b - a for all 0 ≤ a, b <∞, then h is a Zs-contraction in relation to γ.

In fact, consider a = S(hξ, hξ, hϑ) and b = M(ξ, ξ, ϑ). Since h is a contraction,

we obtain :

S(hξ, hξ, hϑ) ≤ LS(ξ, ξ, ϑ) ≤ LM(ξ, ξ, ϑ)

=⇒ LM(ξ, ξ, ϑ)− S(hξ, hξ, hϑ) ≥ 0

=⇒ γ(S(hξ, hξ, hϑ),M(ξ, ξ, ϑ)) ≥ 0.

for all ξ, ϑ ∈ X. Therefore, h is a generalized Zs-contraction in relation to γ.

3.1.6 Example: Consider the complete S-metric space (X, S), where

X = [0, 1] and S : X3 → [0,∞) by S(ξ, ϑ, w) = |ξ − w|+ |ϑ− w|.
Define h:X → X by

hξ =

{
2
5
, for ξ ∈ [0, 2

3
)

1
5
, for ξ ∈ [2

3
, 1)

Now we prove that h is a generalized Zs-contraction in relation to γ, where γ is

defined by γ(a, b) = 6
7
b− a. Now

S(hξ, hξ, hϑ) ≤ 3

7
[S(ξ, ξ, hξ) + S(ϑ, ϑ, hϑ)]

≤ 6

7
max{S(ξ, ξ, hξ), S(ϑ, ϑ, hϑ)}

≤ 6

7
M(ξ, ξ, ϑ)

for all ξ, ϑ ∈ X.

That is, we have

γ(S(hξ, hξ, hϑ),M(ξ, ξ, ϑ)) =
6

7
M(ξ, ξ, ϑ)− d(hξ, hξ, hϑ) ≥ 0.

for all ξ, ϑ ∈ X.

3.1.7 Definition: Let (X, S) be an S-metric space. Then we say that a mapping

h:X → X is asymptotically regular at ξ ∈X if limn→∞ S(hnξ, hnξ, hn+1ξ) = 0.

45



3.2 Main Results and Examples

We derive two Lemmas and a fixed point theorem using generalized Zs-contraction

in relation to simulation function, in this section. By the following Lemma 3.2.1,

we can see that a generalized Zs-contraction is asymptotically regular at every

point of X. In Lemma 3.2.2, we prove that if h is a generalized Zs-contraction

in relation to simulation function then the Picard’s sequence generated by h is a

bounded sequence.

3.2.1 Lemma: If h : X → X is a generalized Zs-contraction in relation to

γ, then h is an asymptotically regular at each point ξ ∈ X.

Proof: Let ξ ∈ X. If for some m ∈N, we have hmξ = hm−1ξ, that is, hϑ = ϑ,

where ϑ = hm−1ξ, then

hnϑ = hn−1hϑ = hn−1ϑ = ... = hϑ = ϑ for each n∈N. Therefore, we have:

S(hnξ, hnξ, hn+1ξ) = S(hn−m+1hm−1ξ, hn−m+1hm−1ξ, hn−m+2hm−1ξ)

= S(hn−m+1ϑ, hn−m+1ϑ, hn−m+2ϑ)

= S(ϑ, ϑ, ϑ)

= 0

Hence

lim
n→∞

S(hnξ, hnξ, hn+1ξ) = 0

Now, we assume that hnξ ̸= hn+1ξ, for each n∈N.
From the condition(γ2) and the generalized Zs-contraction property, we get:

0 ≤ γ(S(hn+1ξ, hn+1ξ, hnξ),M(hnξ, hnξ, hn−1ξ)) (3.2.1)

where

M(hnξ, hnξ, hn−1ξ) = max{S(hnξ, hnξ, hn−1ξ), S(hnξ, hnξ, hhnξ), S(hn−1ξ, hn−1ξ, hhn−1ξ),

1

2
[S(hnξ, hnξ, hhn−1ξ) + S(hn−1ξ, hn−1ξ, hhnξ)]}

= max{S(hnξ, hnξ, hn−1ξ), S(hnξ, hnξ, hn+1ξ), S(hn−1ξ, hn−1ξ, hnξ),

1

2
[S(hnξ, hnξ, hnξ) + S(hn−1ξ, hn−1ξ, hn+1ξ)}

= max{S(hnξ, hnξ, hn−1ξ), S(hn+1ξ, hn+1ξ, hnξ)}

If S(hn+1ξ, hn+1ξ, hnξ) > S(hnξ, hnξ, hn−1ξ), then we get

M(hnξ, hnξ, hn−1ξ) = S(hn+1ξ, hn+1ξ, hnξ)
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From equation (3.2.1) we have,

0 ≤ γ(S(hn+1ξ, hn+1ξ, hnξ), S(hn+1ξ, hn+1ξ, hnξ))

< S(hn+1ξ, hn+1ξ, hnξ)− S(hn+1ξ, hn+1ξ, hnξ) = 0

which is a contradiction.

Hence, M(hnξ, hnξ, hn−1ξ) = S(hnξ, hnξ, hn−1ξ).

Using generalized Zs-contractive property, we get

0 ≤ γ(S(hn+1ξ, hn+1ξ, hnξ),M(hnξ, hnξ, hn−1ξ))

= γ(S(hn+1ξ, hn+1ξ, hnξ), S(hnξ, hnξ, hn−1ξ))

< S(hnξ, hnξ, hn−1ξ)− S(hn+1ξ, hn+1ξ, hnξ)

i.e., S(hn+1ξ, hn+1ξ, hnξ) < S(hnξ, hnξ, hn−1ξ) for all n∈N.
Then {S(hnξ, hnξ, hn−1ξ)} is a non-negative reals decreasing sequence and so it

will be convergent. Suppose limn→∞ S(hnξ, hnξ, hn+1ξ) = η ≥ 0. If η > 0, then

from the condition (γ3) and the generalized Zs-contraction property, we get

0 ≤ lim
n→∞

sup γ(S(hn+1ξ, hn+1ξ, hnξ),M(hnξ, hnξ, hn−1ξ)

= lim
n→∞

sup γ(S(hn+1ξ, hn+1ξ, hnξ), S(hnξ, hnξ, hn−1ξ) < 0

which is a contradiction. So η = 0.

Therefore limn→∞ S(hnξ, hnξ, hn+1ξ) = 0.

Hence, h is asymptotically regular at each point ξ ∈ X.

3.2.2 Lemma: The Picard sequence {ξn}, where hξn−1 = ξn, to each n∈N and

the initial point ξ0 ∈ X, is a bounded sequence, whenever h is a generalized

Zs-contraction in relation to γ.

Proof: Consider the Picard sequence {ξn} in X with initial value ξ0. Now we

claim that {ξn} is a bounded sequence.

Assume that {ξn} is unbounded. Let ξn+m ̸= ξn, for each m,n∈N.
Since {ξn} is unbounded, we can find a sub sequence {ξnl

} of {ξn} so that n1 = 1

and to each l ∈N, nl+1 is the smallest integer so that

S(ξnl+1, ξnl+1, ξnl
) > 1 and S(ξm, ξm, ξnl

) ≤ 1 for nl ≤ m ≤ nl+1 − 1

Hence, from the Lemma (1.2.17.), we obtain

1 < S(ξnl+1
, ξnl+1

, ξnl
)

≤ 2S(ξnl+1
, ξnl+1

, ξnl+1−1) + S(ξnl
, ξnl

, ξnl+1−1)

≤ 2S(ξnl+1
, ξnl+1

, ξnl+1−1) + 1
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Letting l → ∞ and using Lemma (3.2.1), we have

lim
n→∞

S(ξnl+1
, ξnl+1

, ξnl
) = 1.

Now

1 < S(ξnl+1
, ξnl+1

, ξnl
) ≤M(ξnl+1−1, ξnl+1−1, ξnl−1)

= max{S(ξnl+1−1, ξnl+1−1, ξnl−1), S(ξnl+1−1, ξnl+1−1, ξnl+1
), S(ξnl−1, ξnl−1, ξnl

),

1

2
[S(ξnl+1−1, ξnl+1−1, ξnl

) + S(ξnl−1, ξnl−1, ξnl+1
)]}

= max{S(ξnl−1, ξnl−1, ξnl+1−1), S(ξnl+1−1, ξnl+1−1, ξnl+1
), S(ξnl−1, ξnl−1, ξnl

),

1

2
[S(ξnl+1−1, ξnl+1−1, ξnl

) + S(ξnl−1, ξnl−1, ξnl+1
)]}

≤ max{2S(ξnl−1, ξnl−1, ξnl
) + S(ξnl+1−1, ξnl+1−1, ξnl

), S(ξnl+1−1, ξnl+1−1, ξnl+1
),

S(ξnl−1, ξnl−1, ξnl
),
1

2
[S(ξnl+1−1, ξnl+1−1, ξnl

) + S(ξnl−1, ξnl−1, ξnl+1
)]}

≤ max{2S(ξnl−1, ξnl−1, ξnl
) + 1, S(ξnl+1−1, ξnl+1−1, ξnl+1

),

S(ξnl−1, ξnl−1, ξnl
),
1

2
[1 + 2S(ξnl−1, ξnl−1, ξnl

) + S(ξnl
, ξnl

, ξnl+1
)]}

Letting n→ ∞, we get

1 ≤ lim
l→∞

M(ξnl+1−1, ξnl+1−1, ξnl−1) ≤ 1.

That is, liml→∞M(ξnl+1−1, ξnl+1−1, ξnl−1) = 1.

From the condition(γ3) and the generalized Zs-contraction property, we obtain

0 ≤ lim
l→∞

sup γ(S(ξnl+1
, ξnl+1

, ξnl
),M(ξnl+1−1, ξnl+1−1, ξnl−1))

= lim
l→∞

sup γ(S(ξnl+1
, ξnl+1

, ξnl
), S(ξnl+1−1, ξnl+1−1, ξnl−1)) < 0

This is a contradiction. Hence our assumption is wrong.

Therefore {ξn} is bounded.

3.2.3 Theorem: Suppose that h:X → X is a mapping defined on a complete

S-metric space (X, S). Then h has one and only one fixed point η ∈ X and

Picard sequence {ξn} converges to the fixed point η, whenever h is a generalized

Zs-contraction in relation to γ.

Proof. Let the Picard sequence {ξn} be defined as hξn−1 = ξn, ∀n ∈N and ξ0 ∈ X.

Now, we verify that {ξn} is a Cauchy sequence. To get this, consider

Tn = sup{S(ξi, ξi, ξj) : i, j ≥ n}.
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Clearly {Tn} is a non negative reals decreasing sequence. Hence, we can find a

τ ≥ 0 so that limn→∞ Tn = τ . Now we prove that τ = 0. If possible, suppose

that τ > 0. From the definition of Tn, to each k∈N, we can find mk, nk so that

k ≤ nk < mk and

Tk −
1

k
< S(ξmk

, ξmk
, ξnk

) ≤ Tk

Therefore, we get limn→∞ S(ξmk
, ξmk

, ξnk
) = τ .

From the Lemma (1.2.17.), Lemma (3.2.1) and generalized Zs-contraction

property, we get

S(ξmk
, ξmk

, ξnk
) ≤ S(ξmk−1, ξmk−1, ξnk−1)

≤ 2S(ξmk−1, ξmk−1, ξmk
) + S(ξnk−1, ξnk−1, ξmk

)

≤ 2S(ξmk−1, ξmk−1, ξmk
) + 2S(ξnk−1, ξnk−1, ξnk

) + S(ξmk
, ξmk

, ξnk
)

Letting as k→ ∞, we have

lim
k→∞

S(ξmk−1, ξmk−1, ξnk−1) = τ.

Now

S(ξmk−1, ξmk−1, ξnk−1) ≤M(ξmk−1, ξmk−1, ξnk−1)

= max{S(ξmk−1, ξmk−1, ξnk−1), S(ξmk−1, ξmk−1, hξmk−1), S(ξnk−1, ξnk−1, hξnk−1),

1

2
[S(ξmk−1, ξmk−1, hξnk−1) + S(ξnk−1, ξnk−1, hξmk−1)]}

= max{S(ξmk−1, ξmk−1, ξnk−1), S(ξmk−1, ξmk−1, ξmk
), S(ξnk−1, ξnk−1, ξnk

),

1

2
[S(ξmk−1, ξmk−1, ξnk

) + S(ξnk−1, ξnk−1, ξmk
)]}

≤ max{S(ξmk−1, ξmk−1, ξnk−1), S(ξmk−1, ξmk−1, ξmk
), S(ξnk−1, ξnk−1, ξnk

),

1

2
[2S(ξmk−1, ξmk−1, ξmk

) + S(ξmk
, ξmk

, ξnk
)+

2S(ξnk−1, ξnk−1, ξnk
) + S(ξnk

, ξnk
, ξmk

)]}

Letting k → ∞, we get

lim
k→∞

M(ξmk−1, ξmk−1, ξnk−1) = τ.

From the condition (γ3) and the generalized Zs-contraction property, we have

0 ≤ lim
k→∞

sup γ(S(ξmk
, ξmk

, ξnk
),M(ξmk−1, ξmk−1, ξnk−1)) < 0

This is a contraction, Hence, τ = 0.

This claims that the sequence {ξn} becomes a Cauchy in X and since X is complete,
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we can find η ∈ X so that limn→∞ ξn = η.

Now we verify that, η is a fixed point of h.

If suppose hη ̸= η, then S(η, η, hη) = S(hη, hη, η) > 0.

Now,

M(ξn, ξn, η) =max{S(ξn, ξn, η), S(ξn, ξn, hξn), S(η, η, hη),
1

2
[S(ξn, ξn, hη) + S(η, η, hξn)]}

lim
n→∞

M(ξn, ξn, η) = max{S(η, η, η), S(η, η, η), S(η, η, hη), 1
2
[S(η, η, hη) + S(η, η, η)]}

= S(η, η, hη)

From the conditions (γ2), (γ3) and Zs-contraction property, we get

0 ≤ lim
n→∞

sup γ(S(hξn, hξn, hη),M(ξn, ξn, η)) < 0

This is contradiction. Hence S(η, η, hη) = 0 =⇒ hη = η.

Hence, η is a fixed point of h.

Now we show that η is the one and only one fixed point. Suppose that τ in X so

that τ ̸= η and hτ = τ .

Now,

M(η, η, τ) = max{S(η, η, τ), S(η, η, hη), S(τ, τ, hτ), 1
2
[S(η, η, hτ) + S(τ, τ, hη]}

= max{S(η, η, τ), S(η, η, η), S(τ, τ, τ), 1
2
[S(η, η, τ) + S(τ, τ, η)]}

= S(η, η, τ)

From the condition (γ2) and Zs-contraction property, we get

0 ≤ γ(S(hη, hη, hτ),M(η, η, τ)) = γ(S(hη, hη, hτ), S(η, η, τ))

< S(η, η, τ)− S(η, η, τ) = 0,

This is a contradiction. It should be η = τ .

3.2.4 Example: Consider a complete S-metric space (X, S), where X = [0, 1
4
]

and S : X3 → [0,∞) by S(ξ, ϑ, w) = |ξ − w| + |ξ − 2ϑ + w|. Define h: X → X

by hξ = ξ
1+ξ

. From example 2.9 in [84], h is a Z-contraction in relation to γ ∈ Z,
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where γ(a, b) = b
b+ 1

4

− a, for any a,b ∈ [0,∞).

Therefore for all ξ, ϑ ∈ X, we get

0 ≤ γ(S(hξ, hξ, hϑ), S(ξ, ξ, ϑ))

=
S(ξ, ξ, ϑ)

S(ξ, ξ, ϑ) + 1
4

− S(hξ, hξ, hϑ)

≤ M(ξ, ξ, ϑ)

M(ξ, ξ, ϑ) + 1
4

− S(hξ, hξ, hϑ)

= γ(S(hξ, hξ, hϑ),M(ξ, ξ, ϑ)).

Thus, h is a generalized Zs-contraction in relation to γ, for some γ ∈ Z. So, by

the Theorem (3.2.3), h has one and only one fixed point η=0.
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Chapter 4

Fixed point results for (ψ, ϕ)-
weakly contractive generalized
maps in Sb-metric spaces

52



4.1 Introduction:

We introduce (ψ, ϕ) - weakly generalized contraction map in an Sb-metric space

and derived a fixed point theorem for such maps in this chapter. In 2008, Dutta

et al. [85] defined (ψ, ϕ) - weekly contractive maps and obtained some fixed point

results for such contractions. Later, in the year 2017, B.K.Leta and G.V.R.Babu

[87] defined the following (α, ψ, ϕ) - weakly generalized contractive

maps on S-metric spaces and proved a fixed point theorem for such maps as

follows.

In this chapter, we indicate:

(i)Ψ = {ψ : [0,∞) → [0,∞) : ψ is non decreasing, continuous and ψ(t)=0 ⇐⇒
t=0.}
(ii) Φ = {ϕ : [0,∞) → [0,∞): ϕ is continuous, ϕ(t) = 0 ⇐⇒ t = 0}.

4.1.1 Definition: [87] Consider h:X → X, a function on an S-metric space

(X, S). Suppose that ∃ ϕ ∈ Φ, ψ ∈ Ψ and α ∈ (0, 1) so that

ψ(S(hξ, hϑ, hw)) ≤ ψ(Pα(ξ, ϑ, w))− ϕ(Pα(ξ, ϑ, w))

where Pα(ξ, ϑ, w) = max{S(ξ, ϑ, w), S(ξ, ξ, hξ), S(ϑ, ϑ, hϑ), S(w,w, hw),
αS(hξ, hξ, ϑ) + (1− α)S(hϑ, hϑ, w)}, ∀ξ, ϑ, w ∈ X.

Then h is called an (α, ψ, ϕ) - weakly generalized contraction map on X.

4.1.2 Theorem: [87] Consider h:X → X, a function on an S-metric space

(X, S). If h satisfies (α, ψ, ϕ)- weakly generalized contraction map, then h has

one and only one fixed point in X.

By the motivation of B.K.Leta and G.V.R.Babu [87] results in S-metric spaces,

we establish the (ψ, ϕ) - weakly generalized contraction map in Sb-metric spaces

and give an example which satisfy the contraction.

4.1.3 Definition: Let (X, Sb) be an Sb-metric space for s≥1. Let h be a self

map of X. Then we say h is a (ψ, ϕ)- weakly generalized contraction map if

∃ L≥0, ψ ∈ Ψ and ϕ ∈ Φ so that

ψ(4s4Sb(hξ, hϑ, hw)) ≤ ψ(P (ξ, ϑ, w))−ϕ(P (ξ, ϑ, w))+L.Q(ξ, ϑ, w) (4.1.1.)

where P(ξ, ϑ, w) = max{Sb(ξ, ϑ, w), Sb(ξ, ξ, hξ), Sb(ϑ, ϑ, hϑ), Sb(w,w, hw),
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1
4s2

[Sb(hξ, hϑ, hw) + Sb(hξ, hξ, ξ)Sb(hξ, hξ, w)Sb(hw, hw, ϑ)]}
and Q(ξ, ϑ, w) = min{Sb(hw, ξ, ξ), Sb(hξ, ϑ, ϑ), Sb(hξ, w, w), Sb(hξ, ϑ, w)}
∀ξ, ϑ, w ∈ X.

4.1.4 Example: Consider (X, Sb), a complete Sb-metric space for s=4, where

X = [0, 7
3
] and Sb : X

3 → R is defined by

Sb(ξ, ϑ, w) =
1
16
[|ξ − ϑ|+ |ϑ− w|+ |w − ξ|]2, ∀ξ, ϑ, w ∈ X.

We define a self map h on X by

hξ =

{
1
8

when ξ ∈ [0, 2]
ξ
16

− 1
32

when ξ ∈ (2, 7
3
]

.

Also, consider two mappings ϕ, ψ : [0,∞) → [0,∞) defined by ψ(υ) = υ and

ϕ(υ) = υ
4
∀ υ ∈ [0,∞).

Now, we check the inequality (4.1.1.)

Case(i) when ξ, ϑ, w ∈ [0, 2], we have ψ(4s4Sb(hξ, hϑ, hw)) = 0.

Then inequality (4.1.1.) holds good.

Case(ii) ξ, ϑ, w ∈ (2, 7
3
]. Suppose that ξ > ϑ > w. Then

ψ(4s4Sb(hξ, hϑ, hw)) = 45.
1

16
[| ξ
16

− ϑ

16
|+ | ϑ

16
− w

16
|+ | w

16
− ξ

16
|]2

≤ 45

16
[3| ξ

16
− w

16
|]2

≤ 9

4
|ξ − w|2 = 1

4

≤ 15123

16384
=

5041

4096
− 5041

16384

=
3

4
Sb(ξ, ξ, hξ) ≤

3

4
P (ξ, ϑ, w)

= P (ξ, ϑ, w)− 1

4
P (ξ, ϑ, w)

= ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w))

≤ ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)) + L.Q(ξ, ϑ, w).

Case(iii) ξ, ϑ ∈[0, 2] and w ∈ (2, 7
3
]. Suppose that ξ > ϑ. Then

ψ(4s4Sb(hξ, hϑ, hw)) = 45Sb(
1

8
,
1

8
,
w

16
− 1

32
)

=
45

16
[|1
8
− (

w

16
− 1

32
)|+ | w

16
− 1

32
− 1

8
|]

=
45

16
[2|1

8
− w

16
+

1

32
|]2
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=
1

4
[5− 2w]2

≤ 1

4
≤ 15123

16384
=

5041

4096
− 5041

16384

= Sb(w,w, hw)−
1

4
Sb(w,w, hw)

= P (ξ, ϑ, w)− 1

4
P (ξ, ϑ, w)

= ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w))

≤ ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)) + L.Q(ξ, ϑ, w).

Case(iv) ϑ,w ∈ [0, 2] and ξ ∈ (2, 7
3
]. Suppose that ϑ > w. Then

ψ(4s4Sb(hξ, hϑ, hw)) = 45Sb(
ξ

16
− 1

32
,
1

8
,
1

8
)

=
45

16
[| ξ
16

− 1

32
− 1

8
|+ |0|+ |1

8
− (

ξ

16
− 1

32
)|]2

=
45

16
[2|1

8
− (

ξ

16
− 1

32
)|]2

= 44[
5− 2ξ

32
]2 =

1

4
[5− 2ξ]2

≤ 1

4
≤ 15123

16384
=

5041

4096
− 5041

16384

=
3

4
Sb(ξ, ξ, hξ) ≤

3

4
P (ξ, ϑ, w)

= P (ξ, ϑ, w)− 1

4
P (ξ, ϑ, w)

= ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w))

≤ ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)) + L.Q(ξ, ϑ, w).

Case(v) w∈[0, 2] and ξ, ϑ ∈ (2, 7
3
]. Suppose that ξ > ϑ. Then

ψ(4s4Sb(hξ, hϑ, hw)) = 45Sb(
ξ

16
− 1

32
,
ϑ

16
− 1

32
,
1

8
)

=
45

16
[
ξ − ϑ

16
+

2ϑ− 5

32
+

5− 2ξ

32
]2

=
45

16
[
10− 4ϑ

32
]2

≤ 1

4
[5− 2ϑ]2

≤ 1

4
≤ 15123

16384
=

5041

4096
− 5041

16384

= Sb(w,w, hw)−
1

4
Sb(w,w, hw)

= P (ξ, ϑ, w)− 1

4
P (ξ, ϑ, w)

= ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w))

≤ ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)) + L.Q(ξ, ϑ, w).
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Case(vi) ξ ∈[0, 2] and ϑ,w ∈ (2, 7
3
]. Suppose that ϑ > w. Then

ψ(4s4Sb(hξ, hϑ, hw)) = 45Sb(
1

8
,
ϑ

16
− 1

32
,
w

16
− 1

32
)

=
45

16
[|1
8
− (

ϑ

16
− 1

32
)|+ |ϑ− w

16
|+ | w

16
− 1

32
− 1

8
|]2

=
45

16
[
5− 2ϑ

32
+

2ϑ− 2w

32
+

5− 2w

32
]2

=
45

16
.
1

322
[2(5− 2w)]2

≤ 1

4
≤ 15123

16384
=

5041

4096
− 5041

16384

= Sb(w,w, hw)−
1

4
Sb(w,w, hw)

= P (ξ, ϑ, w)− 1

4
P (ξ, ϑ, w)

= ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w))

≤ ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)) + L.Q(ξ, ϑ, w).

Case(vii) ξ, w ∈[0, 2] and ϑ ∈ (2, 7
3
]. Suppose that ξ > w. Then

ψ(4s4Sb(hξ, hϑ, hw)) = 45Sb(
1

8
,
ϑ

16
− 1

32
,
1

8
)

=
45

16
[|1
8
− (

ϑ

16
− 1

32
)|+ | ϑ

16
− 1

32
− 1

8
|+ |0|]2

=
45

16
.
1

322
[2(5− 2ϑ)]2

=
1

4
[5− 2ϑ]2

≤ 1

4
≤ 15123

16384
=

5041

4096
− 5041

16384

= Sb(w,w, hw)−
1

4
Sb(w,w, hw)

= P (ξ, ϑ, w)− 1

4
P (ξ, ϑ, w)

= ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w))

≤ ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)) + L.Q(ξ, ϑ, w).

Case(viii) ξ ∈[0, 2] and ϑ,w ∈ (2, 7
3
]. Suppose that ϑ > w. Then

ψ(4s4Sb(hξ, hϑ, hw)) = 45Sb(
1

8
,
y

16
− 1

32
,
w

16
− 1

32
)

=
45

16
[|1
8
− (

ϑ

16
− 1

32
)|+ |ϑ− w

16
|+ | w

16
− 1

32
− 1

8
|]2

=
45

16
.
1

322
[2(5− 2w)]2
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=
1

4
[5− 2w]2

≤ 1

4
≤ 15123

16384
=

5041

4096
− 5041

16384

= Sb(w,w, hw)−
1

4
Sb(w,w, hw)

= P (ξ, ϑ, w)− 1

4
P (ξ, ϑ, w)

= ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w))

≤ ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)) + L.Q(ξ, ϑ, w).

Therefore h is a (ψ, ϕ) - weakly generalized contractive map.

4.2 Main Results and Examples

We establish a fixed point theorem using the (ψ, ϕ) - weakly generalized

contraction maps in this section. Further, we derive some corollaries and give

an example to support the result.

4.2.1 Theorem: Suppose h is a self map in a complete symmetric Sb-metric

space (X, Sb) for s≥1. If h is a (ψ, ϕ) - weakly generalized contraction map, then

h has one and only one fixed point in X.

Proof: Consider ξ0 ∈ X and a sequence {ξℓ} in X is defined by ξℓ = hξℓ−1,

for ℓ =1,2,3...

Suppose ξℓ−1 = ξℓ for some ℓ. Then h has a fixed point ξℓ−1.

Now, we suppose that ξℓ−1 ̸= ξℓ, ∀ ℓ ∈ N.

By choosing ξ = ϑ = ξℓ−2, w = ξℓ−1 in (4.1.1.), we obtain

ψ(Sb(ξℓ−1ξℓ−1, ξℓ)) ≤ ψ(4s4Sb(hξℓ−2, hξℓ−2, hξℓ−1))

≤ ψ(P (ξℓ−2, ξℓ−2, ξℓ−1)),−ϕ(P (ξℓ−2, ξℓ−2, ξℓ−1))

+ L.Q(ξℓ−2, ξℓ−2, ξℓ−1) (4.2.1.)

where

P (ξℓ−2, ξℓ−2, ξℓ−1) = max{Sb(ξℓ−2, ξℓ−2, ξℓ−1), Sb(ξℓ−2, ξℓ−2, hξℓ−2), Sb(ξℓ−2, ξℓ−2, hξℓ−2),

Sb(ξℓ−1, ξℓ−1, hξℓ−1),
1

4s2
[Sb(hξℓ−2, hξℓ−2, hξℓ−1)+

Sb(hξℓ−2, hξℓ−2, ξℓ−2)Sb(hξℓ−2, hξℓ−2, ξℓ−1)Sb(hξℓ−1, hξℓ−1., ξℓ−2)]})

= max{Sb(ξℓ−2, ξℓ−2, ξℓ−1), Sb(ξℓ−1, ξℓ−1, ξℓ)} (4.2.2.)
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and

Q(ξℓ−2, ξℓ−2, ξℓ−1) = min{Sb(hξℓ−1, ξℓ−2, ξℓ−2), Sb(hξℓ−2, ξℓ−2, ξℓ−2),

Sb(hξℓ−2, ξℓ+1, ξℓ−1), Sb(hξℓ−2, ξℓ−2, ξℓ−1)}

= 0. (4.2.3.)

If Sb(ξℓ−1, ξℓ−1, ξℓ) is the maximum in (4.2.2.) and using (4.2.3.) and (4.2.1.),

we get

ψ(Sb(ξℓ−1ξℓ−1, ξℓ)) ≤ ψ(Sb(ξℓ−1, ξℓ−1, ξℓ))− ϕ(Sb(ξℓ−1, ξℓ−1, ξℓ)).

This implies ϕ(Sb(ξℓ−1, ξℓ−1, ξℓ)) = 0. Therefore, ξℓ−1 = ξℓ, a contradiction to our

assumption. Thus,

ψ(Sb(ξℓ−1, ξℓ−1, ξℓ)) ≤ ψ(Sb(ξℓ−2, ξℓ−2, ξℓ−1))− ϕ(Sb(ξℓ−2, ξℓ−2, ξℓ−1)). (4.2.4.)

< ψ(Sb(ξℓ−2, ξℓ−2, ξℓ−1)).

By the definition of ψ, we have

Sb(ξℓ−1, ξℓ−1, ξℓ) < Sb(ξℓ−2, ξℓ−2, ξℓ−1).

Thus, {Sb(ξℓ−1, ξℓ−1, ξℓ)} is a positive real numbers strictly decreasing sequence.

Then we find a p ≥ 0 so that

lim
ℓ→∞

Sb(ξℓ−1, ξℓ−1, ξℓ) = p.

Taking ℓ→ ∞ in (4.2.4.), we get

ψ(p) ≤ ψ(p)− ϕ(p). This implies ϕ(p) = 0. Hence p = 0. Thus,

lim
ℓ→∞

Sb(ξℓ−1, ξℓ−1, ξℓ) = 0. (4.2.5.)

By choosing ξ = ϑ = ξℓ−1, w = ξℓ−2 in (4.1.1.), we get

ψ(Sb(ξℓ, ξℓ, ξℓ−1)) ≤ ψ(4s4Sb(hξℓ−1, hξℓ−1, hξℓ−2))

≤ ψ(P (ξℓ−1, ξℓ−1, ξℓ−2))− ϕ(P (ξℓ−1, ξℓ−1, ξℓ−2))

+ L.Q(ξℓ−1, ξℓ−1, ξℓ−2) (4.2.6.)

where

P (ξℓ−1, ξℓ−1, ξℓ−2) = max{Sb(ξℓ−1, ξℓ−1, ξℓ−2), Sb(ξℓ−1, ξℓ−1, hξℓ−1), Sb(ξℓ−1, ξℓ−1, hξℓ−1),

Sb(ξℓ−2, ξℓ−2, hξℓ−2),
1

4s2
[Sb(hξℓ−1, hξℓ−1, hξℓ−2)+

Sb(hξℓ−1, hξℓ−1, ξℓ−1)Sb(hξℓ−1, hξℓ−1, ξℓ−2)Sb(hξℓ−2, hξℓ−2, ξℓ−1)]}

= max{Sb(ξℓ−1, ξℓ−1, ξℓ−2), Sb(ξℓ, ξℓ, ξℓ−1)} (4.2.7.)
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and

Q(ξℓ+1, ξℓ−1, ξℓ−2) = min{Sb(hξℓ−2, ξℓ−1, ξℓ−1), Sb(hξℓ−1, ξℓ−1, ξℓ−1),

Sb(hξℓ−1, ξℓ−2, ξℓ−2), Sb(hξℓ−1, ξℓ−1, ξℓ−2)}

= 0. (4.2.8.)

If Sb(ξℓ, ξℓ, ξℓ−1) is maximum in (4.2.7.) and using (4.2.6.) and (4.2.8.), we get

ψ(Sb(ξℓ, ξℓ, ξℓ−1)) ≤ ψ(Sb(ξℓ, ξℓ, ξℓ−1))− ϕ(Sb(ξℓ, ξℓ, ξℓ−1)) + L.0

This implies ϕ(Sb(ξℓ, ξℓ, ξℓ−1)) = 0. Hence, ξℓ = ξℓ−1, a contradiction to our

assumption. Thus

ψ(Sb(ξℓ, ξℓ, ξℓ−1)) ≤ ψ(Sb(ξℓ−1, ξℓ−1, ξℓ−2))− ϕ(Sb(ξℓ−1, ξℓ−1, ξℓ−2)) (4.2.9.)

≤ ψ(Sb(ξℓ−1, ξℓ−1, ξℓ−2))

By the definition of ψ, we obtain

Sb(ξℓ, ξℓ, ξℓ−1) < Sb(ξℓ−1, ξℓ−1, ξℓ−2).

Thus, {Sb(ξℓ, ξℓ, ξℓ−1)} is a positive real numbers strictly decreasing sequence.

Hence, we can find p ≥ 0 so that

lim
ℓ→∞

Sb(ξℓ, ξℓ, ξℓ−1) = p.

Taking ℓ→ ∞ in (4.2.9.), we obtain

ψ(p) ≤ ψ(p)− ϕ(p).

This implies ϕ(p) = 0. Therefore p = 0. Thus,

lim
ℓ→∞

Sb(ξℓ, ξℓ, ξℓ−1) = 0.

Now we verify that {ξℓ} is a Sb-Cauchy sequence in X.

Suppose that sequence {ξℓ} is not Sb- Cauchy . Then ∃ ϵ > 0 and monotone

increasing sequence of real numbers m(σ) and ℓ(σ) with ℓ(σ) > m(σ) > σ

so that

Sb(ξm(σ)−1, ξm(σ)−1, ξℓ(σ)−1) ≥ ϵ and Sb(ξm(σ)−1, ξm(σ)−1, ξℓ(σ)−2) < ϵ. (4.2.10.)

Now from (4.1.1.), (4.2.6) and (4.2.10.), we have

ψ(4s4ϵ) ≤ ψ(4s4Sb(ξm(σ)−1, ξm(σ)−1, ξℓ(σ)−1))

= ψ(4s4Sb(hξm(σ)−2, hξm(σ)−2, hξℓ(σ)−2))

≤ ψ(P (ξm(σ)−2, ξm(σ)−2, ξℓ(σ)−2))− ϕ(P (ξm(σ)−2, ξm(σ)−2, ξℓ(σ)−2))

+ L.Q(ξm(σ)−2, ξm(σ)−2, ξℓ(σ)−2)
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where

P (ξm(σ)−2, ξm(σ)−2, ξℓ(σ)−2) = max{Sb(ξm(σ)−2, ξm(σ)−2, ξℓ(σ)−2), Sb(ξm(σ)−2, ξm(σ)−2, hξm(σ)−2),

Sb(ξm(σ)−2, ξm(σ)−2, hξm(σ)−2), Sb(ξℓ(σ)−2, ξℓ(σ)−2, hξℓ(σ)−2),

1

4s2
[Sb(hξm(σ)−2, hξm(σ)−2, hξℓ(σ)−2)

+ Sb(hξm(σ)−2, hξm(σ)−2, ξm(σ)−2)Sb(hξm(σ)−2, hξm(σ)−2, ξℓ(σ)−2)

Sb(hξℓ(σ)−2, hξℓ(σ)−2, ξm(σ)−2)]})

= max{Sb(ξm(σ)−2, ξm(σ)−2, ξℓ(σ)−2), Sb(ξm(σ)−2, ξm(σ)−2, ξm(σ)−1),

Sb(ξm(σ)−2, ξm(σ)−2, ξm(σ)−1), Sb(ξℓ(σ)−2, ξℓ(σ)−2, ξℓ(σ)−1),

1

4s2
[Sb(ξm(σ)−1, ξm(σ)−1, ξℓ(σ)−1)

+ Sb(ξm(σ)−1, ξm(σ)−1, ξm(σ)−2)Sb(ξm(σ)−1, ξm(σ)−1, ξℓ(σ)−2)

Sb(ξℓ(σ)−1, ξℓ(σ)−1, ξm(σ)−2)]})

As σ → ∞

limσ→∞A(ξm(σ)−2, ξm(σ)−2, ξℓ(σ)−2) = max{Sb(ξm(σ)−2, ξm(σ)−2, ξℓ(σ)−2),

1

4s2
Sb(ξm(σ)−1, ξm(σ)−1, ξℓ(σ)−1)}.

and

Q(ξm(σ)−2, ξm(σ)−2, ξℓ(σ)−2) = min{Sb(hξℓ(σ)−2, ξm(σ)−2, ξm(σ)−2), Sb(hξm(σ)−2, ξm(σ)−2, ξm(σ)−2),

Sb(hξm(σ)−2, ξℓ(σ)−2, ξℓ(σ)−2), Sb(hξm(σ)−2, ξm(σ)−2, ξℓ(σ)−2)}.

= 0.

If 1
4s2
Sb(ξm(σ)−1, ξm(σ)−1, ξℓ(σ)−1) is maximum,

ψ(4s4Sb(ξm(σ)−1, ξm(σ)−1, ξℓ(σ)−1)) ≤ ψ(
1

4s2
Sb(ξm(σ)−1, ξm(σ)−1, ξℓ(σ)−1))

− ϕ(
1

4s2
Sb(ξm(σ)−1, ξm(σ)−1, ξℓ(σ)−1))

This implies

ψ(4s4Sb(ξm(σ)−1, ξm(σ)−1, ξℓ(σ)−1)) < ψ(
1

4s2
Sb(ξm(σ)−1, ξm(σ)−1, ξℓ(σ)−1))

From the property of ψ, we have

4s4Sb(ξm(σ)−1, ξm(σ)−1, ξℓ(σ)−1) <
1

4s2
Sb(ξm(σ)−1, ξm(σ)−1, ξℓ(σ)−1)
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This gives rise to

4s4 < 1
4s2

⇒ 16s6 < 1, a contradiction as s ≥ 1.

Therefore, we have

ψ(4s4Sb(ξm(σ)−1, ξm(σ)−1, ξℓ(σ)−1)) ≤ ψ(Sb(ξm(σ)−2, ξm(σ)−2, ξℓ(σ)−2))

− ϕ(Sb(ξm(σ)−2, ξm(σ)−2, ξℓ(σ)−2))

< ψ(Sb(ξm(σ)−2, ξm(σ)−2, ξℓ(σ)−2))

Now using Lemma(1.3.3.), we have

4s4Sb(ξm(σ)−1, ξm(σ)−1, ξℓ(σ)−1) ≤ 2sSb(ξm(σ)−2, ξm(σ)−2, ξm(σ)−1)

+ s2Sb(ξm(σ)−1, ξm(σ)−1, ξℓ(σ)−2).

Letting σ → ∞, we get

4s4ϵ ≤ s2ϵ, a contradiction as s≥1.

Hence {ξℓ} is a Sb-Cauchy sequence of complete space X. Then ∃ τ ∈ X so that

lim
ℓ→∞

ξℓ = τ.

Now we show that hτ = τ . Suppose that hτ ̸= τ . Then by Lemma (1.3.8.),

we have
1

2s
Sb(fτ, fτ, τ) ≤ lim inf

ℓ→∞
Sb(hτ, hτ, hξℓ)

This implies

4s4

2s
Sb(fτ, fτ, τ) ≤ 4s4 lim inf

ℓ→∞
Sb(hτ, hτ, hξℓ)

≤ 4s4 lim sup
ℓ→∞

Sb(hτ, hτ, hξℓ)

Thus

2s3Sb(hτ, hτ, τ) ≤ 4s4 lim inf
ℓ→∞

Sb(hτ, hτ, hξℓ)

≤ 4s4 lim sup
ℓ→∞

Sb(hτ, hτ, hξℓ)

Using the property of ψ, we get

ψ(2s3Sb(hτ, hτ, τ)) ≤ ψ(4s4 lim sup
ℓ→∞

Sb(hτ, hτ, hξℓ))

≤ ψ(lim sup
ℓ→∞

P (τ, τ, ξℓ))− ϕ(lim sup
ℓ→∞

P (τ, τ, ξℓ))

+ L(lim sup
ℓ→∞

Q(τ, τ, ξℓ))
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Now

P (τ, τ, ξℓ) = max{Sb(τ, τ, ξℓ), Sb(τ, τ, hτ), Sb(τ, τ, hτ), Sb(ξℓ, ξℓ, hξℓ),

1

4s2
[Sb(hτ, hτ, hξℓ) + Sb(hτ, hτ, τ)Sb(hτ, hτ, ξℓ)Sb(hξℓ, hξℓ, τ)]}

= max{Sb(τ, τ, hτ),
1

4s2
Sb(hτ, hτ, τ)}

Q(τ, τ, ξℓ) = min{Sb(hξℓ, τ, τ), Sb(hτ, τ, τ), Sb(hτ, ξℓ, ξℓ), Sb(hτ, τ, ξℓ)}

= 0

If 1
4s2
Sb(hτ, hτ, τ) is maximum, we get

ψ(2s3Sb(hτ, hτ, τ)) ≤ ψ(
1

4s2
Sb(hτ, hτ, τ))− ϕ(

1

4s2
Sb(hτ, hτ, τ)) + L.0

< ψ(
1

4s2
Sb(hτ, hτ, τ))

Using the property of ψ, we get

2s3Sb(hτ, hτ, τ) <
1

4s2
Sb(hτ, hτ, τ)

this implies

8s5 < 1, a contradiction. Therefore

ψ(2s3Sb(hτ, hτ, τ)) ≤ ψ(Sb(τ, τ, hτ))− ϕ(Sb(τ, τ, hτ)) + L.0

i.e., ψ(2s3Sb(hτ, hτ, τ)) < ψ(Sb(τ, τ, hτ)). (4.2.11.)

If τ ̸= hτ , in (4.2.11.), we have

2s3Sb(hτ, hτ, τ) < Sb(τ, τ, hτ) ≤ sSb(hτ, hτ, τ)

which implies

2s2 < 1, is a contradiction. Therefore, hτ = τ .

Now, we show that τ is unique.

Let τ and β be two different fixed points of h.

Now, consider

ψ(Sb(τ, τ, β)) = ψ(Sb(hτ, hτ, hβ))

≤ ψ(4s4Sb(hτ, hτ, hβ)) (4.2.12.)

≤ ψ(P (τ, β, β))− ϕ(P (τ, β, β)) + L.Q(τ, β, β)
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where

P (τ, β, β) = max{Sb(τ, β, β), Sb(τ, τ, hτ), Sb(β, β, hβ), Sb(β, β, hβ),

1

4s4
[Sb(hτ, hβ, hβ) + Sb(hτ, hτ, τ)Sb(hτ, hτ, β)Sb(hβ, hβ, β)]}

= {Sb(τ, β, β),
1

4s
Sb(τ, β, β)} = Sb(τ, β, β) (4.2.13.)

and

Q(τ, β, β) = min{Sb(hβ, τ, τ), Sb(hτ, β, β), Sb(hτ, fτ, β), Sb(hβ, fβ, β)} = 0 (4.2.14.)

From (4.2.12.),(4.2.13.) and (4.2.14.) we get

ψ(
1

4s4
Sb(τ, β, β)) ≤ ψ(Sb(τ, β, β))− ϕ(Sb(τ, β, β)) + L.0

< ψ(Sb(τ, β, β)).

From the property of ψ, we have 4s4 < 1, a contradiction.

There fore, we get Sb(τ, β, β) = 0

Hence β = τ . Hence τ is the one and only one fixed point of h.

In the Theorem (4.2.1.), if we substitute L=0, we get the following.

4.2.2 Corollary: Let h be a self map of X, where X is an Sb-metric space.

Suppose ∃ ϕ ∈ Φ and ψ ∈ Ψ so that

ψ(4s4Sb(hξ, hϑ, hw)) ≤ ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w))

where P (ξ, ϑ, w) = max{Sb(ξ, ϑ, w), Sb(ξ, ξ, hξ), Sb(ϑ, ϑ, hϑ), Sb(w,w, hw),

1
4s2

[Sb(hξ, hϑ, hw) + Sb(hξ, hξ, ξ)Sb(hξ, hξ, w)Sb(hw, hw, ϑ)]}.
∀ξ, ϑ, w ∈ X. Then h contains one and only one fixed point in X.

If ψ is the identity function in the Corollary (4.2.2), we get a Corollary as

follows.

4.2.3 Corollary: Let h be a self map of X, where X is an Sb-metric space.

Suppose there exists ϕ ∈ Φ so that

4s4Sb(hξ, hϑ, hw) ≤ P (ξ, ϑ, w)− ϕ(P (ξ, ϑ, w))

where P (ξ, ϑ, w) = max{Sb(ξ, ϑ, w), Sb(ξ, ξ, hξ), Sb(ϑ, ϑ, hϑ), Sb(w,w, hw),

1
4s2

[Sb(hξ, hϑ, hw) + Sb(hξ, hξ, ξ)Sb(hξ, hξ, w)Sb(hw, hw, ϑ)]}.
∀ ξ, ϑ, w ∈ X. Then h contains one and only one fixed point in X.

If we substitute P(ξ, ϑ, w) = P*(ξ, ϑ, w) in the Theorem (4.2.1.), we obtain the

following.
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4.2.4 Corollary: Let h be a self map of X, where X is an Sb-metric space.

Suppose ∃ ϕ ∈ Φ and ψ ∈ Ψ so that

ψ(4s4Sb(hξ, hϑ, hw)) ≤ ψ(P ∗(ξ, ϑ, w))− ϕ(P ∗(ξ, ϑ, w)) + L.Q(ξ, ϑ, w)

where P*(ξ, ϑ, w) = max{Sb(ξ, ϑ, w), Sb(ξ, ξ, hξ), Sb(ϑ, ϑ, hϑ), Sb(w,w, hw),
Sb(ξ,ξ,hξ)Sb(ϑ,ϑ,hϑ)

1+Sb(ξ,ξ,hξ)+Sb(ξ,ϑ,w)
, Sb(ξ,ξ,hξ)Sb(w,w,hw)
1+Sb(w,w,hw)+Sb(ξ,ϑ,w)

,

1
4s2

[Sb(hξ, hϑ, hw) + Sb(hξ, hξ, ξ)Sb(hξ, hξ, w)Sb(hw, hw, ϑ)]}.
and Q(ξ, ϑ, w) = min{Sb(hw, ξ, ξ), Sb(hξ, ϑ, ϑ), Sb(hξ, w, w), Sb(hξ, ϑ, w)}
∀ξ, ϑ, w ∈ X. Then h contains one and only one fixed point in X.

In Theorem (4.2.1.), if we put s=1, we get the following.

4.2.5 Corollary: Let h be a self map of X, where X is an S-metric space.

Suppose that ∃ L≥ 0, ϕ ∈ Φ and ψ ∈ Ψ so that

ψ(S(hξ, hϑ, hw)) ≤ ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)) + L.Q(ξ, ϑ, w)

where P (ξ, ϑ, w) = max{S(ξ, ϑ, w), S(ξ, ξ, hξ), S(ϑ, ϑ, hϑ), S(w,w, hw),
1
2
[S(hξ, hϑ, hw) + S(hξ, hξ, ξ)S(hξ, hξ, w)S(hw, hw, ϑ)]}

and Q(ξ, ϑ, w) = min{S(hw, ξ, ξ), S(hξ, ϑ, ϑ), S(hξ, w,w), S(hξ, ϑ, w)}
∀ξ, ϑ, w ∈ X. Then h contains one and only one fixed point in X.

4.2.6 Example: Consider X = [0, 12
5
] and define Sb : X

3 → R by

Sb(ξ, ϑ, w) =
1
16
[|ξ − ϑ|+ |ϑ− w|+ |w − ξ|]2, ∀ξ, ϑ, w ∈ X.

Then (X, Sb) is a complete Sb-metric space for s=4.

We define a self map h on X by

hξ =

{
1
8

when ξ ∈ [0, 2]
ξ
16

− 1
32

when ξ ∈ (2, 12
5
]

.

Also, consider two maps ϕ, ψ : [0,∞) → [0,∞) defined by

ψ(υ) = υ and ϕ(υ) = υ
3
, ∀ υ ∈ [0,∞).

Now, we validate the inequality (4.1.1.).

Case(i) When ξ, ϑ, w ∈ [0, 2], we have ψ(4s4Sb(hξ, hϑ, hw)) = 0.

Then inequality (4.1.1.) holds good.

Case(ii) ξ, ϑ, w ∈ (2, 12
5
]. Suppose that ξ > ϑ > w. Then

ψ(4s4Sb(hξ, hϑ, hw)) = 45.
1

16
[| ξ
16

− ϑ

16
|+ | ϑ

16
− w

16
|+ | w

16
− ξ

16
|]2

≤ 45

16
[3| ξ

16
− w

16
|]2

≤ 9

4
|ξ − w|2 = 9

25
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≤ 10558

12288
=

5329

4096
− 5329

12288

= Sb(ξ, ξ, hξ)−
1

3
Sb(ξ, ξ, hξ)

= P (ξ, ϑ, w)− 1

3
P (ξ, ϑ, w)

= ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w))

≤ ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)) + L.Q(ξ, ϑ, w).

Case(iii) ξ, ϑ ∈[0, 2] and w∈ (2, 12
5
]. Suppose that ξ > ϑ. Then

ψ(4s4Sb(hξ, hϑ, hw)) = 45Sb(
1

8
,
1

8
,
w

16
− 1

32
)

=
45

16
[|1
8
− (

w

16
− 1

32
)|+ | w

16
− 1

32
− 1

8
|]2

=
45

16
[2|1

8
− w

16
+

1

32
|]2

=
1

4
[5− 2w]2

≤ 1

4
≤ 10558

12288
=

5329

4096
− 5329

12288

= Sb(w,w, hw)−
1

3
Sb(w,w, hw)

= P (ξ, ϑ, w)− 1

3
P (ξ, ϑ, w)

= ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w))

≤ ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)) + L.Q(ξ, ϑ, w).

Case(iv) ϑ,w ∈ [0, 2] and ξ ∈ (2, 12
5
]. Suppose that ϑ > w. Then

ψ(4s4Sb(hξ, hϑ, hw)) = 45Sb(
ξ

16
− 1

32
,
1

8
,
1

8
)

=
45

16
[| ξ
16

− 1

32
− 1

8
|+ |0|+ |1

8
− (

ξ

16
− 1

32
)|]2

=
45

16
[2|1

8
− (

ξ

16
− 1

32
)|]2

= 44[
5− 2ξ

32
]2 =

1

4
[5− 2ξ]2

≤ 1

4
≤ 10558

12288
=

5329

4096
− 5329

12288

=
2

3
Sb(ξ, ξ, hξ) ≤

2

3
P (ξ, ϑ, w)

= P (ξ, ϑ, w)− 1

3
P (ξ, ϑ, w)

= ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w))

≤ ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)) + L.Q(ξ, ϑ, w).
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Case(v) w∈[0, 2] and ξ, ϑ ∈ (2, 12
5
]. Suppose that ξ > ϑ. Then

ψ(4s4Sb(hξ, hϑ, hw)) = 45Sb(
ξ

16
− 1

32
,
ϑ

16
− 1

32
,
1

8
)

=
45

16
[
ξ − ϑ

16
+

2ϑ− 5

32
+

5− 2ξ

32
]2

=
45

16
[
10− 4ϑ

32
]2

≤ 1

4
[5− 2ϑ]2

≤ 1

4
≤ 10558

12288
=

5329

4096
− 5329

12288

= Sb(w,w, hw)−
1

3
Sb(w,w, hw)

= P (ξ, ϑ, w)− 1

3
P (ξ, ϑ, w)

= ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w))

≤ ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)) + L.Q(ξ, ϑ, w).

Case(vi) ξ ∈[0, 2] and ϑ,w ∈ (2, 12
5
]. Suppose that ϑ > w. Then

ψ(4s4Sb(hξ, hϑ, hw)) = 45Sb(
1

8
,
ϑ

16
− 1

32
,
w

16
− 1

32
)

=
45

16
[|1
8
− (

ϑ

16
− 1

32
)|+ |ϑ− w

16
|+ | w

16
− 1

32
− 1

8
|]2

=
45

16
[
5− 2ϑ

32
+

2ϑ− 2w

32
+

5− 2w

32
]2

=
45

16
.
1

322
[2(5− 2w)]2

≤ 1

4
≤ 10558

12288
=

5329

4096
− 5329

12288

= Sb(w,w, hw)−
1

3
Sb(w,w, hw)

= P (ξ, ϑ, w)− 1

3
P (ξ, ϑ, w)

= ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w))

≤ ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)) + L.Q(ξ, ϑ, w).

Case(vii) ξ, w ∈[0, 2] and ϑ ∈ (2, 12
5
]. Suppose that ξ > w. Then

ψ(4s4Sb(hξ, hϑ, hw)) = 45Sb(
1

8
,
ϑ

16
− 1

32
,
1

8
)

=
45

16
[|1
8
− (

ϑ

16
− 1

32
)|+ | ϑ

16
− 1

32
− 1

8
|+ |0|]2

=
45

16
.
1

322
[2(5− 2ϑ)]2
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=
1

4
[5− 2ϑ]2

≤ 1

4
≤ 10558

12288
=

5329

4096
− 5329

12288

= Sb(w,w, hw)−
1

3
Sb(w,w, hw)

= P (ξ, ϑ, w)− 1

3
P (ξ, ϑ, w)

= ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w))

≤ ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)) + L.Q(ξ, ϑ, w).

Case(viii) ξ ∈[0, 2] and ϑ,w ∈ (2, 12
5
]. Suppose that ϑ > w. Then

ψ(4s4Sb(hξ, hϑ, hw)) = 45Sb(
1

8
,
y

16
− 1

32
,
w

16
− 1

32
)

=
45

16
[|1
8
− (

ϑ

16
− 1

32
)|+ |ϑ− w

16
|+ | w

16
− 1

32
− 1

8
|]2

=
45

16
.
1

322
[2(5− 2w)]2

=
1

4
[5− 2w]2

≤ 1

4
≤ 10558

12288
=

5329

4096
− 5329

12288

= Sb(w,w, hw)−
1

3
Sb(w,w, hw)

= P (ξ, ϑ, w)− 1

3
P (ξ, ϑ, w)

= ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w))

≤ ψ(P (ξ, ϑ, w))− ϕ(P (ξ, ϑ, w)) + L.Q(ξ, ϑ, w).

Hence h holds the conditions of Theorem 4.2.1. and 1
8
is the one and only one

fixed point of h.
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Chapter 5

Fixed and Common fixed point
results in Sb-metric Spaces using
implicit relation
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5.1 Introduction

Sedghi and Dung [109] established a general fixed point theorem in an S-metric

space using implicit relation in 2014. Later, in 2021, Gurucharan Singh Saluja

[110] derived fixed point and common fixed point theorems in an S-metric space

by defining the following implicit relation.

5.1.1 Definition (Implicit Relation):

Let Ψ = {ψ : R4
+ → R+ : ψ is continuous and non decreasing} and for q ∈ [0, 1).

We assume the following conditions.

(1) For ξ, ϑ ∈ R+, if ξ ≤ ψ(ϑ, ϑ, ξ, 4ξ+ϑ
3

), then ξ ≤ qϑ.

(2) For ξ ∈ R+, if ξ ≤ ψ(0, ξ, 0, 0), then ξ = 0.

(3) For ξ ∈ R+, if ξ ≤ ψ(ξ, 0, 0, ξ
3
) then ξ = 0. Since q ∈ [0, 1).

Motivated by GS Saluja [110] result, we prove fixed and common fixed point

theorems in Sb-metric spaces using implicit relation in this chapter. The findings

given in this research extend and generalize various findings from the previous

literature.

Now, we establish an implicit relation to derive some fixed point and common

fixed point theorems in Sb-metric spaces.

5.1.2 Definition(Implicit Relation):

Let Ψ = {ψ : R5
+ → R+ : ψ is continuous and non decreasing} and for q ∈ [0, 1

s2
],

where s ≥1. We assume the following conditions.

(R1) For ξ, ϑ ∈ R+, if ξ ≤ ψ(ϑ, sξ, sϑ, sξ, ξ + sϑ) then ξ ≤ qϑ.

(R2) For ξ, ϑ ∈ R+, if ξ ≤ ψ(0, 0, ξ, 0, 0) then ξ = 0.

(R3) For ξ ∈ R+, if ξ ≤ ψ(ξ, 0, 0, 0, ξ
2
) then ξ = 0.

5.2 Main Results and Examples

We prove a fixed point theorem satisfying an implicit relation in Sb-metric spaces,

through this section. Further, we provide a corollary and an example to that

corollary.
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5.2.1 Theorem: Suppose T is a self map on a complete Sb-metric space

(X, Sb) with s ≥ 1 and

Sb(Tξ, Tϑ, Tw) ≤ ψ(Sb(ξ, ϑ, w), Sb(ϑ, ϑ, Tξ), Sb(w,w, Tw), Sb(ξ, ξ, Tϑ),

1

2s
[Sb(ϑ, ϑ, Tϑ) + Sb(w,w, Tξ)]) (5.2.1)

for all ξ, ϑ, w ∈ X and ψ ∈ Ψ. Then T has one and only one fixed point in X,

whenever ψ satisfies (R1), (R2), and (R3).

Proof: Consider an arbitrary ξ0 ∈ X and construct a sequence {ξℓ} in X so that

ξℓ+1 = Tξℓ, to each ℓ ∈ N. If ξℓ+1 = ξℓ, for some ℓ ∈ N, then ξℓ = Tξℓ. Hence,

T has a fixed point. Now, we suppose that ξℓ+1 ̸= ξℓ, ∀ℓ ∈ N. Now utilizing the

inequality (5.2.1) and Lemma 1.3.3., we consider

Sb(ξℓ+1., ξℓ+1, ξℓ) = Sb(Tξℓ, T ξℓ, T ξℓ−1)

≤ ψ(Sb(ξℓ, ξℓ, ξℓ−1), Sb(ξℓ, ξℓ, T ξℓ), Sb(ξℓ−1, ξℓ−1, T ξℓ−1),

Sb(ξℓ, ξℓ, T ξℓ),
1

2s
[Sb(ξℓ, ξℓ, T ξℓ) + Sb(ξℓ−1, ξℓ−1, T ξℓ−1)])

= ψ(Sb(ξℓ, ξℓ, ξℓ−1), sSb(ξℓ+1, ξℓ+1, ξℓ), sSb(ξℓ, ξℓ, ξℓ−1),

sSb(ξℓ+1, ξℓ+1, ξℓ), [Sb(ξℓ+1, ξℓ+1, ξℓ) + sSb(ξℓ, ξℓ, ξℓ−1)]) (5.2.2)

Since ψ ∈ Ψ holds the property (R1), we can find q ∈ [0, 1
s2
] so that

Sb(ξℓ+1, ξℓ+1, ξℓ) ≤ qSb(ξℓ, ξℓ, ξℓ−1) ≤ qℓSb(ξ1, ξ1, ξ0) (5.2.3)

For ℓ,m ∈ N with ℓ < m, utilizing Lemma 1.3.3. and equation (5.2.3), we have

Sb(ξℓ, ξℓ, ξm) ≤ 2sSb(ξℓ, ξℓ, ξℓ+1) + s2Sb(ξℓ+1, ξℓ+1, ξm)

≤ 2sSb(ξℓ, ξℓ, ξℓ+1) + s2[2Sb(ξℓ+1, ξℓ+1, ξℓ+2) + s2Sb(ξℓ+2, ξℓ+2, ξm)]

≤ 2sqℓ[1 + s2q + (s2q)2 + .....]Sb(ξ0, ξ0, ξ1)

≤ (
2sqℓ

1− s2q
)Sb(ξ0, ξ0, ξ1)

Taking the limit as ℓ → ∞, we get Sb(ξℓ, ξℓ, ξm) → 0, since q ∈ [0, 1
s2
] and s ≥ 1.

This claims that the sequence {ξℓ} becomes a Cauchy sequence X and since X is

complete, we can find a ϱ ∈ X so that limℓ→∞ ξℓ = ϱ. Now we verify that ϱ is a
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fixed point of T. Again by utilizing inequality (5.2.1), we obtain

Sb(ξℓ+1, ξℓ+1, Tϱ) = Sb(Tξℓ, T ξℓ, Tϱ)

≤ ψ(Sb(ξℓ, ξℓ, ϱ), Sb(ξℓ, ξℓ, T ξℓ), Sb(ϱ, ϱ, Tϱ),

Sb(ξℓ, ξℓ, T ξℓ),
1

2s
[Sb(ξℓ, ξℓ, T ξℓ) + Sb(ϱ, ϱ, T ξℓ)])

= ψ(Sb(ξℓ, ξℓ, ϱ), Sb(ξℓ, ξℓ, ξℓ+1), Sb(ϱ, ϱ, Tϱ),

Sb(ξℓ, ξℓ, ξℓ+1),
1

2s
[Sb(ξℓ, ξℓ, ξℓ+1) + Sb(ϱ, ϱ, ξℓ+1)])

Letting ℓ→ ∞ , we get

Sb(ϱ, ϱ, Tϱ) ≤ψ(Sb(ϱ, ϱ, ϱ), Sb(ϱ, ϱ, ϱ), Sb(ϱ, ϱ, Tϱ),

Sb(ϱ, ϱ, ϱ),
1

2s
[Sb(ϱ, ϱ, ϱ) + Sb(ϱ, ϱ, ϱ)])

i.e., Sb(ϱ, ϱ, Tϱ) ≤ ψ(0, 0, Sb(ϱ, ϱ, Tϱ), 0, 0)

Since ψ ∈ Ψ holds the property (R2), we obtain

Sb(ϱ, ϱ, Tϱ) ≤ qSb(ϱ, ϱ, Tϱ)

that is, (1− q)Sb(ϱ, ϱ, Tϱ) ≤ 0.

Therefore we get Sb(ϱ, ϱ, Tϱ) = 0, as 0 ≤ q ≤ 1
s2
. Hence Tϱ = ϱ.

Thus, ϱ is a fixed point of T. Now, we claim that ϱ is unique.

For this, let θ is any other fixed point of T. It follows from inequality (5.2.1) and

Lemma 1.3.3., we get

Sb(ϱ, ϱ, θ) = Sb(Tϱ, Tϱ, Tθ)

≤ ψ(Sb(ϱ, ϱ, θ), Sb(ϱ, ϱ, Tϱ), Sb(θ, θ, Tθ),

Sb(ϱ, ϱ, Tϱ),
1

2s
[Sb(ϱ, ϱ, Tϱ) + Sb(θ, θ, Tϱ)])

= ψ(Sb(ϱ, ϱ, θ), Sb(ϱ, ϱ, ϱ), Sb(θ, θ, θ),

Sb(ϱ, ϱ, ϱ),
1

2s
[Sb(ϱ, ϱ, ϱ) + Sb(θ, θ, ϱ)])

≤ ψ(Sb(ϱ, ϱ, θ), 0, 0, 0,
1

2
Sb(ϱ, ϱ, θ))

Since ψ ∈ Ψ holds the property (R3), we obtain

Sb(ϱ, ϱ, θ) ≤ qSb(ϱ, ϱ, θ)

that is, (1− q)Sb(ϱ, ϱ, θ) ≤ 0.

Therefore we get Sb(ϱ, ϱ, θ) = 0, as 0 ≤ q ≤ 1
s2
. Hence ϱ = θ.

Thus the fixed point of T is unique.
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5.2.2 Corollary: Let T : X → X be a function on a complete Sb-metric space

(X, Sb) and let T satisfy Sb(Tξ, Tϑ, Tw) ≤ γSb(ξ, ϑ, w) for all ξ, ϑ, w ∈ X, where

γ ∈ [0, 1) is a constant. Then T has one and only one fixed point in X. Moreover,

T is continuous at the fixed point.

Proof: We can prove easily from Theorem 5.2.1. with ψ(a, b, c, d, e) = γa, for

γ ∈ [0, 1) and a,b,c,d,e ∈ R+.

5.2.3 Example: Let (X, Sb) be a complete Sb-metric space with s=4, where

X = [0, 1] and Sb(ξ, ϑ, w) = (|ξ − w|+ |ϑ− w|)2.
Now, we let the mapping T: X → X be defined by T (ξ) = ξ

5
, ∀ξ ∈ [0, 1].

Then Sb(Tξ, Tϑ, Tw) = (|Tξ − Tw|+ |Tϑ− Tw|)2

= (| ξ
5
− w

5
|+ |ϑ

5
− w

5
|)2

= 1
25
(|ξ − w|+ |ϑ− w|)2

≤ 1
25
Sb(ξ, ϑ, w)

=γSb(ξ, ϑ, w).

where γ = 1
25
< 1. Clearly T holds all the properties of Corollary 5.2.2. and hence

0∈ X is the one and only one fixed point of T.

5.3 Common fixed point results in Sb-metric spaces

Through this section, we prove a common fixed point theorem using an implicit

relation in Sb-metric spaces. Further, we extend these results to a family of

continuous maps and also we provide a corollary.

5.3.1 Theorem: Let T1 and T2 be two self maps on a complete Sb-metric space

(X, Sb) with s ≥ 1 and

Sb(T1ξ, T1ϑ, T2w) ≤ ψ(Sb(ξ, ϑ, w), Sb(ϑ, ϑ, T1ξ), Sb(w,w, T2w),

Sb(ξ, ξ, T1ϑ),
1

2s
[Sb(ϑ, ϑ, T1ϑ) + Sb(w,w, T1ξ)]) (5.3.1)

for all ξ, ϑ, w ∈ X and ψ ∈ Ψ. Then T1 and T2 have a unique common fixed point

in X, whenever ψ holds the conditions (R1),(R2) and (R3).

Proof: Consider an arbitrary ξ0 ∈ X and a sequence {ξℓ} in X defined by

ξ2ℓ+1 = T1ξ2ℓ and ξ2ℓ+2 = T2ξ2ℓ+1, for ℓ = 0,1,2,3.....
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It follows from inequality (5.3.1.) and Lemma 1.3.3., that

Sb(ξ2ℓ+1, ξ2ℓ+1, ξ2ℓ) = Sb(T1ξ2ℓ, T1ξ2ℓ, T2ξ2ℓ−1)

≤ ψ(Sb(ξ2ℓ, ξ2ℓ, ξ2ℓ−1), Sb(ξ2ℓ, ξ2ℓ, T1ξ2ℓ), Sb(ξ2ℓ−1, ξ2ℓ−1, T2ξ2ℓ−1),

Sb(ξ2ℓ, ξ2ℓ, T1ξ2ℓ),
1

2s
[Sb(ξ2ℓ, ξ2ℓ, T1ξ2ℓ) + Sb(ξ2ℓ−1, ξ2ℓ−1, T1ξ2ℓ)])

= ψ(Sb(ξ2ℓ, ξ2ℓ, ξ2ℓ−1), Sb(ξ2ℓ, ξ2ℓ, ξ2ℓ+1), Sb(ξ2ℓ−1, ξ2ℓ−1, ξ2ℓ),

Sb(ξ2ℓ, ξ2ℓ, ξ2ℓ+1),
1

2s
[Sb(ξ2ℓ, ξ2ℓ, ξ2ℓ+1) + Sb(ξ2ℓ−1, ξ2ℓ−1, ξ2ℓ+1)])

≤ ψ(Sb(ξ2ℓ, ξ2ℓ, ξ2ℓ−1), sSb(ξ2ℓ+1, ξ2ℓ+1, ξ2ℓ), sSb(ξ2ℓ, ξ2ℓ, ξ2ℓ−1),

sSb(ξ2ℓ+1, ξ2ℓ+1, ξ2ℓ),
1

2s
[sSb(ξ2ℓ+1, ξ2ℓ+1, ξ2ℓ)

+ 2sSb(ξ2ℓ−1, ξ2ℓ−1, ξ2ℓ) + sSb(ξ2ℓ+1, ξ2ℓ+1, ξ2ℓ)])

≤ ψ(Sb(ξ2ℓ, ξ2ℓ, ξ2ℓ−1), sSb(ξ2ℓ+1, ξ2ℓ+1, ξ2ℓ),

sSb(ξ2ℓ, ξ2ℓ, ξ2ℓ−1), sSb(ξ2ℓ+1, ξ2ℓ+1, ξ2ℓ),

1

2s
[2sSb(ξ2ℓ+1, ξ2ℓ+1, ξ2ℓ) + 2s2Sb(ξ2ℓ, ξ2ℓ, ξ2ℓ−1)]) (5.3.2.)

Since ψ ∈ Ψ holds the property (R1), we can find q ∈ [0, 1
s2
] such that

Sb(ξ2ℓ+1, ξ2ℓ+1, ξ2ℓ) ≤ qSb(ξ2ℓ, ξ2ℓ, ξ2ℓ−1) ≤ q2ℓSb(ξ1, ξ1, ξ0) (5.3.3.)

For ℓ,m ∈ N with ℓ < m, From the equation (5.3.3.) and Lemma 1.3.3., we get

Sb(ξℓ, ξℓ, ξm) ≤ 2sSb(ξℓ−1, ξℓ, ξℓ+1) + s2Sb(ξℓ+1, ξℓ+1, ξm)

≤ 2sSb(ξℓ, ξℓ, ξℓ+1) + s2[2Sb(ξℓ+1, ξℓ+1, ξℓ+2)

+ s2Sb(ξℓ+2, ξℓ+2, ξm)]

≤ 2sqℓ[1 + s2q + (s2q)2 + .....]Sb(ξ0, ξ0, ξ1)

≤ (
2sqℓ

1− s2q
)Sb(ξ0, ξ0, ξ1)

Taking the limit as ℓ → ∞, we get Sb(ξℓ, ξℓ, ξm) → 0, since q ∈ [0, 1
s2
] and s ≥ 1.

This claims that the sequence {ξℓ} becomes a Cauchy in X and since X is complete,

we can find a ϱ ∈ X so that limℓ→∞ ξℓ = ϱ. Now we claim that ϱ is a common

fixed point of T1 and T2. Now, we consider,

Sb(ξ2ℓ+1, ξ2ℓ+1, T1ϱ) = Sb(T1ξ2ℓ, T1ξ2ℓ, T1ϱ)

≤ ψ(Sb(ξ2ℓ, ξ2ℓ, ϱ), Sb(ξ2ℓ, ξ2ℓ, T1ξ2ℓ), Sb(ϱ, ϱ, T1ϱ),

Sb(ξ2ℓ, ξ2ℓ, T1ξ2ℓ),
1

2s
[Sb(ξ2ℓ, ξ2ℓ, T1ξ2ℓ) + Sb(ϱ, ϱ, T1ξ2ℓ)])

= ψ(Sb(ξ2ℓ, ξ2ℓ, ϱ), Sb(ξ2ℓ, ξ2ℓ, ξ2ℓ+1), Sb(ϱ, ϱ, T1ϱ),

Sb(ξ2ℓ, ξ2ℓ, ξ2ℓ+1),
1

2s
[Sb(ξ2ℓ, ξ2ℓ, ξ2ℓ+1) + Sb(ϱ, ϱ, ξ2ℓ+1)]) (5.3.4)
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Letting ℓ→ ∞, we get

Sb(ϱ, ϱ, T1ϱ) ≤ ψ(Sb(ϱ, ϱ, ϱ), Sb(ϱ, ϱ, ϱ), Sb(ϱ, ϱ, T1ϱ),

Sb(ϱ, ϱ, ϱ),
1

2s
[Sb(ϱ, ϱ, ϱ) + Sb(ϱ, ϱ, ϱ)])

that is, Sb(ϱ, ϱ, T1ϱ) ≤ ψ(0, 0, Sb(ϱ, ϱ, T1ϱ), 0, 0)

Since ψ ∈ Ψ holds the property(R2), we have

Sb(ϱ, ϱ, T1ϱ) ≤ qSb(ϱ, ϱ, T1ϱ)

that is, (1− q)Sb(ϱ, ϱ, T1ϱ) ≤ 0.

Therefore we get Sb(ϱ, ϱ, T1ϱ) = 0, as 0 ≤ q ≤ 1
s2
. Hence T1ϱ = ϱ.

Similarly, we can show that T2ϱ = ϱ. Therefore, ϱ is a common fixed point of T1

and T2. Now, we prove that ϱ is one and only one common fixed point. For this,

suppose θ is another common fixed point of T1 and T2. Utilizing the Lemma 1.3.3.

and equation (5.3.1.), we have

Sb(ϱ, ϱ, θ) = Sb(T1ϱ, T1ϱ, T2θ)

≤ ψ(Sb(ϱ, ϱ, θ), Sb(ϱ, ϱ, T1ϱ), Sb(θ, θ, T2θ),

Sb(ϱ, ϱ, T1ϱ),
1

2s
[Sb(ϱ, ϱ, T1ϱ) + Sb(θ, θ, T1ϱ)])

= ψ(Sb(ϱ, ϱ, θ), Sb(ϱ, ϱ, ϱ), Sb(θ, θ, θ),

Sb(ϱ, ϱ, ϱ),
1

2s
[Sb(ϱ, ϱ, ϱ) + Sb(θ, θ, ϱ)])

≤ ψ(Sb(ϱ, ϱ, θ), 0, 0, 0,
1

2
Sb(ϱ, ϱ, θ))

Since ψ ∈ Ψ holds the property(R3), we have

Sb(ϱ, ϱ, θ) ≤ qSb(ϱ, ϱ, θ)

that is, (1− q)Sb(ϱ, ϱ, θ) ≤ 0.

Therefore, we get Sb(ϱ, ϱ, θ) = 0, as 0 ≤ q ≤ 1
s2
. Hence ϱ = θ. Therefore ϱ is the

unique common fixed point of T1 and T2.

5.3.2 Theorem: Let T1, T2 : X → X be two continuous functions on a complete

Sb-metric space (X, Sb) with s ≥ 1 and

Sb(T
p
1 ξ, T

p
1 ϑ, T

q
2w) ≤ ψ(Sb(ξ, ϑ, w), Sb(ϑ, ϑ, T

p
1 ξ), Sb(w,w, T

q
2w),

Sb(ξ, ξ, T
p
1 ϑ),

1

2s
[Sb(ϑ, ϑ, T

p
1 ϑ) + Sb(w,w, T

p
1 ξ)]) (5.3.5)
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for all ξ, ϑ, w ∈ X, where ψ ∈ Ψ and p , q∈ Z. Then T1 and T2 have a unique

common fixed point in X, whenever ψ satisfies the conditions (R1),(R2) and (R3).

Proof: Since T p
1 and T q

2 satisfy the conditions of Theorem 5.3.1. So, T p
1 and T q

2

have one and only one common fixed point. Let λ be the common fixed point.

Then, we have T p
1 λ = λ⇒ T1(T

p
1 λ) = T1λ⇒ T p

1 (T1λ) = T1λ.

If T1λ = λ0, then T
p
1 λ0 = λ0. So, T1λ is a fixed point of T p

1 .

Similarly, T2(T
q
2λ) = T q

2 (T2λ) = T2λ. Now, utilizing equation (5.3.5) and

Lemma 1.3.3., we obtain

Sb(λ, λ, T1λ) = Sb(T
p
1 λ, T

p
1 λ, T

p
1 (T1λ))

≤ ψ(Sb(λ, λ, T1λ), Sb(λ, λ, T
p
1 λ), Sb(T1λ, T1λ, T

p
1 (T1λ)),

Sb(λ, λ, T
p
1 λ),

1

2s
[Sb(λ, λ, T

p
1 λ) + Sb(T1λ, T1λ, T

p
1 λ)])

= ψ(Sb(λ, λ, T1λ), Sb(λ, λ, λ), Sb(T1λ, T1λ, T1λ),

Sb(λ, λ, λ),
1

2s
[Sb(λ, λ, λ) + Sb(T1λ, T1λ, λ)])

≤ ψ(Sb(λ, λ, T1λ), 0, 0, 0,
1

2
[Sb(λ, λ, T1λ)])

Since ψ ∈ Ψ holds the property (R3), we get

Sb(λ, λ, T1λ) ≤ qSb(λ, λ, T1λ)

that is, (1− q)Sb(λ, λ, T1λ) ≤ 0.

Therefore we get Sb(λ, λ, T1λ) = 0, as 0 ≤ q ≤ 1
s2

and s ≥ 1. Hence T1λ = λ.

Similarly, we can show that T2λ = λ. Thus λ is a common fixed point of T1 and

T2. To prove uniqueness of λ, let λ∗ ̸= λ be any other common fixed point of

T1 and T2. Then obviously λ∗ is also a common fixed point of T p
1 and T q

2 , which

implies λ = λ∗. Therefore T1 and T2 have one and only one common fixed point.

5.3.3 Theorem: Let {Gα} be a collection of continuous self mappings on a

complete Sb-metric space (X, Sb) with s ≥ 1 and

Sb(Gαξ,Gαϑ,Gβw) ≤ ψ(Sb(ξ, ϑ, w), Sb(ϑ, ϑ,Gαξ), Sb(w,w,Gβw),

Sb(ξ, ξ, Gαϑ),
1

2s
[Sb(ϑ, ϑ,Gαϑ) + Sb(w,w,Gαξ)]) (5.3.6.)

for all ξ, ϑ, w ∈ X, and α, β ∈ Ψ with α ̸= β. Then there is one and only one

ϱ ∈ X satisfying Gαϱ = ϱ, for all α ∈ Ψ.

Proof: Consider an arbitrary ξ0 ∈ X and a sequence {ξℓ} in X defined by
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ξ2ℓ+1 = Gαξ2ℓ and ξ2ℓ+2 = Gβξ2ℓ+1, for ℓ=0,1,2,3.....

It follows from inequality (5.3.6.) and Lemma 1.3.3., that

Sb(ξ2ℓ+1, ξ2ℓ+1, ξ2ℓ) = Sb(Gαξ2ℓ, Gαξ2ℓ, Gβξ2ℓ−1)

≤ ψ(Sb(ξ2ℓ, ξ2ℓ, ξ2ℓ−1), Sb(ξ2ℓ, ξ2ℓ, Gαξ2ℓ), Sb(ξ2ℓ−1, ξ2ℓ−1, Gβξ2ℓ−1),

Sb(ξ2ℓ, ξ2ℓ, Gαξ2ℓ),
1

2s
[Sb(ξ2ℓ, ξ2ℓ, Gαξ2ℓ) + Sb(ξ2ℓ−1, ξ2ℓ−1, Gαξ2ℓ)])

= ψ(Sb(ξ2ℓ, ξ2ℓ, ξ2ℓ−1), Sb(ξ2ℓ, ξ2ℓ, ξ2ℓ+1), Sb(ξ2ℓ−1, ξ2ℓ−1, ξ2ℓ),

Sb(ξ2ℓ, ξ2ℓ, ξ2ℓ+1),
1

2s
[Sb(ξ2ℓ, ξ2ℓ, ξ2ℓ+1) + Sb(ξ2ℓ−1, ξ2ℓ−1, ξ2ℓ+1)])

≤ ψ(Sb(ξ2ℓ, ξ2ℓ, ξ2ℓ−1), sSb(ξ2ℓ+1, ξ2ℓ+1, ξ2ℓ), sSb(ξ2ℓ, ξ2ℓ, ξ2ℓ−1),

sSb(ξ2ℓ+1, ξ2ℓ+1, ξ2ℓ),
1

2s
[sSb(ξ2ℓ+1, ξ2ℓ+1, ξ2ℓ)

+ 2sSb(ξ2ℓ−1, ξ2ℓ−1, ξ2ℓ) + sSb(ξ2ℓ+1, ξ2ℓ+1, ξ2ℓ)])

≤ ψ(Sb(ξ2ℓ, ξ2ℓ, ξ2ℓ−1), sSb(ξ2ℓ+1, ξ2ℓ+1, ξ2ℓ),

sSb(ξ2ℓ, ξ2ℓ, ξ2ℓ−1), sSb(ξ2ℓ+1, ξ2ℓ+1, ξ2ℓ),

1

2s
[2sSb(ξ2ℓ+1, ξ2ℓ+1, ξ2ℓ) + 2s2Sb(ξ2ℓ, ξ2ℓ, ξ2ℓ−1)]) (5.3.7.)

Since ψ ∈ Ψ holds the property (R1), we can find q ∈ [0, 1
s2
] so that

Sb(ξ2ℓ+1, ξ2ℓ+1, ξ2ℓ) ≤ qSb(ξ2ℓ, ξ2ℓ, ξ2ℓ−1) ≤ q2ℓSb(ξ1, ξ1, ξ0) (5.3.8.)

For ℓ,m ∈ N with m > ℓ, by utilizing equation (5.3.8.) and Lemma 1.3.3.,

we have

Sb(ξℓ, ξℓ, ξm) ≤ 2sSb(ξℓ+1, ξℓ, ξℓ+1) + s2Sb(ξℓ+1, ξℓ+1, ξm)

≤ 2sSb(ξℓ, ξℓ, ξℓ+1) + s2[2Sb(ξℓ+1, ξℓ+1, ξℓ+2) + s2Sb(ξℓ+2, ξℓ+2, ξm)]

≤ 2sqℓ[1 + s2q + (s2q)2 + .....]Sb(ξ0, ξ0, ξ1)

≤ (
2sqℓ

1− s2q
)Sb(ξ0, ξ0, ξ1)

Taking the limit as ℓ → ∞, we get Sb(ξℓ, ξℓ, ξm) → 0, since q ∈ [0, 1
s2
] and s ≥ 1.

Hence the sequence {ξℓ} becomes Cauchy in X and since X is complete, we can

find a ϱ ∈ X so that limℓ→∞ ξℓ = ϱ. It is clear that Gαϱ = Gβϱ = ϱ, since by the

continuity of Gα and Gβ. Hence ϱ is a common fixed point of Gα and Gβ, for any

α ∈ Ψ. To verify the uniqueness, consider another common fixed point θ of Gα

76



and Gβ, where ϱ ̸= θ. Then utilizing Lemma 1.3.3. and equation (5.3.6.), we get

Sb(ϱ, ϱ, θ) = Sb(Gαϱ,Gαϱ,Gβθ)

≤ ψ(Sb(ϱ, ϱ, θ), Sb(ϱ, ϱ,Gαϱ), Sb(θ, θ,Gβθ),

Sb(ϱ, ϱ,Gαϱ),
1

2s
[Sb(ϱ, ϱ,Gαϱ) + Sb(θ, θ,Gαϱ)])

= ψ(Sb(ϱ, ϱ, θ), Sb(ϱ, ϱ, ϱ), Sb(θ, θ, θ),

Sb(ϱ, ϱ, ϱ),
1

2s
[Sb(ϱ, ϱ, ϱ) + Sb(θ, θ, ϱ)])

≤ ψ(Sb(ϱ, ϱ, θ), 0, 0, 0,
1

2
Sb(ϱ, ϱ, θ))

Since ψ ∈ Ψ holds the condition(R3), we get

Sb(ϱ, ϱ, θ) ≤ qSb(ϱ, ϱ, θ)

that is, (1− q)Sb(ϱ, ϱ, θ) ≤ 0.

Therefore we get Sb(ϱ, ϱ, θ) = 0, as 0 ≤ q ≤ 1
s2
. Hence ϱ = θ. Thus ϱ is the one

and only one common fixed point of Gα, ∀α ∈ Ψ.

5.3.4 Corollary: Suppose that the functions T1, T2 : X → X are two functions

defined on a complete Sb-metric space (X, Sb) and satisfy

Sb(T1ξ, T1ϑ, T2w) ≤ δSb(ξ, ϑ, w) for all ξ, ϑ, w ∈ X and δ ∈ [0, 1). Then T1

and T2 have one and only one common fixed point in X.

Proof: Follows from Theorem 5.3.1., by substituting ψ(a, b, c, d, e) = δa, for

δ ∈ [0, 1).
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Chapter 6

Common and Coupled fixed point
results in bicomplex valued
metric spaces using CLR -
properties
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6.1 Introduction

In this chapter, we establish two unique common fixed point theorems for four

self-mappings and six self-mappings and a common coupled fixed point theorem

in a bicomplex valued metric space. Firstly, we prove a common fixed point

theorem for four self-mappings by using weaker conditions such as weakly

compatibility, generalized contraction and CLRAB property. Then, secondly,

we derive a common fixed point theorem for six self-mappings with the help of

weakly compatibility and inclusion relations by using the generalized contraction.

Finally, we prove a common coupled fixed point theorem in the bicomplex valued

metric space. The aforementioned findings are extensions and generalizations of

Iqbal H.Jebril, S. Kumar Datta, Rakesh Sarkar and N. Biswas [108].

6.2 Main Results and Examples

Now, we derive a common fixed point theorem to four self-mappings using

weakly compatibility and CLRAB property in this

section. Further, we also give a corollary and an example to support the

result.

6.2.1 Theorem: Suppose (X, d) is a complete bicomplex valued metric space

and h,k,A and B are self mappings on X satisfying

(i) d(hϖ, kϑ) ⪯i2 τ1d(Aϖ,Bϑ) + τ2d(Aϖ, hϖ) + τ3d(Bϑ, kϑ), ∀ϖ,ϑ ∈ X,

where τ2,τ1 and τ3 are non negative reals such that 1 > τ1 + τ2 + τ3.

(ii) {B, k} and {A, h} are weakly compatible,

(iii) {B, k} and {A, h} satisfy CLRAB property.

Then h,k,A and B have one and only one common fixed point.

Proof: Since {B, k} and {A, h} satisfy CLRAB property, we can find

sequences {ϖn} and {ϑn} in X so that

limn→∞ hϖn = limn→∞Aϖn = limn→∞ kϑn = limn→∞Bϑn = ȷ,

for some ȷ ∈ AX∩BX. Then ȷ = Bη1 = Aη2, for some η1, η2 ∈ X.

Now we claim that kη1= Bη1. To each n∈ N, we have

d(hϖn, kη1) ⪯i2 τ1d(Aϖn, Bη1) + τ2d(Aϖn, hϖn) + τ3d(Bη1, kη1)

Letting n → ∞ , we get

d(Bη1, kη1) ⪯i2 τ1d(Bη1, Bη1) + τ2d(Bη1, Bη1) + τ3d(Bη1, kη1)

i.e.,d(Bη1, kη1) ⪯i2 τ3d(Bη1, kη1)
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Therefore we have

∥d(Bη1, kη1)∥ ≤ τ3 ∥d(Bη1, kη1)∥
which is a contradiction, since τ1 + τ2 + τ3 < 1.

Therefore we get ∥d(Bη1, kη1)∥ = 0. Thus Bη1 = kη1.

Now we claim that Aη2 = hη2. To each n∈ N, we consider

d(hη2, kϑn) ⪯i2 τ1d(Aη2, Bϑn) + τ2d(Aη2, hη2) + τ3d(Bϑn, kϑn)

Letting n → ∞, we get

d(hη2,Aη2) ⪯i2 τ1d(Aη2, Aη2) + τ2d(Aη2, hη2) + τ3d(Aη2, Aη2)

i.e., d(hη2,Aη2) ⪯i2 τ2d(hη2,Aη2)

Therefore we have ∥d(hη2,Aη2)∥ ≤ τ2∥d(hη2,Aη2)∥
which is a contradiction, since τ1 + τ2 + τ3 < 1.

Therefore, we get ∥d(hη2,Aη2)∥ = 0. Thus hη2 = Aη2.

Hence Bη1 = kη1 = hη2 = Aη2 = ȷ.

Given that {A, h} is weakly compatible and hη2 = Aη2. We get hAη2 = Ahη2.

So, hȷ=Aȷ.

Given that {B, k} is weakly compatible and kη1 = Bη1. We get kBη1 = Bkη1.

So, kȷ = Bȷ.

Now we prove that hȷ = ȷ.

Consider

d(hȷ,kη1) ⪯i2 τ1d(Aȷ,Bη1) + τ2d(Aȷ,hȷ) + τ3d(Bη1,kη1)

i.e., d(hȷ,ȷ) ⪯i2 τ1d(hȷ,ȷ) + τ2d(hȷ,hȷ) + τ3d(ȷ,ȷ)

i.e., d(hȷ,ȷ) ⪯i2 τ1d(hȷ,ȷ)

Therefore we have ∥d(hȷ,ȷ)∥ ≤ τ1 ∥d(hȷ,ȷ)∥
which is a contradiction, since τ1 + τ2 + τ3 < 1.

Therefore, we get ∥d(hȷ,ȷ)∥ = 0. Thus hȷ = ȷ. So, we have hȷ = ȷ = Aȷ.

Now we prove that kȷ = ȷ.

Consider

d(hη2,kȷ) ⪯i2 τ1d(Aη2,Bȷ) + τ2d(Aη2,hη2) + τ3d(Bȷ,kȷ)

i.e., d(ȷ,kȷ) ⪯i2 τ1d(ȷ,kȷ) + τ2d(ȷ,ȷ) + τ3d(kȷ,kȷ)

Therefore we have ∥d(ȷ,kȷ)∥ ≤ τ1∥d(ȷ,kȷ)∥
which is a contradiction, since τ1 + τ2 + τ3 < 1.

Therefore, we get ∥d(ȷ,kȷ)∥ = 0. Thus kȷ = ȷ. So, we have kȷ = ȷ = Bȷ.

Hence hȷ = Aȷ = ȷ = kȷ = Bȷ.

Therefore ȷ is common fixed point of A,h,k and B.

Now we prove ȷ is unique.
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For this, we consider another common fixed point δ of h,k,A and B.

Then hδ = kδ = Aδ = Bδ = δ.

Now, consider

d(ȷ,δ) = d(hȷ,kδ) ⪯i2 τ1d(Aȷ,Bδ) + τ2d(Aȷ,hȷ) + τ3d(Bδ,kδ)

i.e., d(ȷ,δ) ⪯i2 τ1d(ȷ,δ) + τ2d(ȷ,ȷ) + τ3d(δ,δ)

i.e., d(ȷ,δ) ⪯i2 τ1 d(ȷ,δ)

Therefore we have ∥d(ȷ,δ)∥ ≤ τ1∥d(ȷ,δ)∥
which is a contradiction, since τ1 + τ2 + τ3 < 1.

Hence, we get ∥d(ȷ, δ)∥ = 0.Thus ȷ = δ.

Hence, ȷ is the one and only one common fixed point of h,k,A and B.

6.2.2 Example: Suppose X = [0, 1] and define d: X × X → C2 by

d(ϖ,ϑ) =

{
0, for ϖ = ϑ and

i2max{ϖ,ϑ}, otherwise

for all ϖ,ϑ ∈ X.

Define h,k,A and B be self maps on X as:

For ϖ ∈ X, h(ϖ) = ϖ
3
, k(ϖ) = ϖ

3
, A(ϖ) = ϖ and B(ϖ) = ϖ.

First, we show that {h,A} and {k,B} satisfy CLRAB property. For this, we

choose ϖn = 1
2n

and ϑn = 1
3n+1

for n∈ N. Clearly, < ϖn > and < ϑn > are

in X. Then d(Aϖn, 0) = d( 1
2n
, 0) → 0 as n → ∞. Also, d(hϖn, 0) = d( 1

6n
, 0)

→ to 0 as n → ∞. Similarly, we get d(kϑn, 0) = d( 1
9n+1

, 0) → 0 as n → ∞ and

d(Bϑn, 0) = d( 1
3n+1

, 0) → 0 as n → ∞. Since A0 = 0 = B0.

So, we have 0 ∈ AX ∩ BX. Therefore, we have sequences {ϖn} and {ϑn} in

X so that limn→∞ hϖn = limn→∞Aϖn = limn→∞ kϑn = limn→∞Bϑn = 0. Thus

{h,A} and {k,B} satisfy CLRAB property.

Now we show that {h,A} and {k,B} are weakly compatible.

Now, hϖ = Aϖ =⇒ ϖ
3
= ϖ =⇒ ϖ = 0 and hA(0) = h(0) = 0 and Ah(0) =

A(0) = 0. Thus hA(ϖ) = Ah(ϖ), whenever hϖ = Aϖ, for all ϖ ∈ X. Hence

{h,A} is weakly compatible in X.

Also, kϖ = Bϖ =⇒ ϖ
3

= ϖ =⇒ ϖ = 0 and kB(0) = Bk(0). Thus,

kB(ϖ) = Bk(ϖ), whenever kϖ = Bϖ for all ϖ ∈ X. Hence, {k,B} is weakly

compatible in X.

Finally, we show that condition (i) of the Theorem holds.

Now, d(hϖ, kϑ) = d(ϖ
3
, ϑ
3
) = i2max{ϖ

3
, ϑ
3
},

d(Aϖ,Bϑ) = d(ϖ,ϑ) = i2max{ϖ,ϑ},
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d(Aϖ, hϖ) = d(ϖ, ϖ
3
) = i2max{ϖ, ϖ

3
} = i2ϖ,

d(Bϑ, kϑ) = d(ϑ, ϑ
3
) = i2max{ϑ, ϑ3} = i2ϑ.

Case(a) if ϖ > ϑ, then

d(hϖ, kϑ) = i2max{ϖ
3
, ϑ
3
} = i2

ϖ
3
,

d(Aϖ,Bϑ) = i2max{ϖ,ϑ} = i2ϖ,

d(Aϖ, hϖ) = i2max{ϖ, ϖ3 } = i2ϖ,

d(Bϑ, kϑ) = i2ϑ.

Now, d(hϖ, kϑ) = i2
ϖ
3
⪯i2

1
4
[i2ϖ] + 1

4
[i2ϖ] + 1

4
[i2ϑ]

i.e., d(hϖ, kϑ) ⪯i2
1
4
d(Aϖ,Bϑ) + 1

4
d(Aϖ, hϖ) + 1

4
d(Bϑ, kϑ)

By choosing τ1 = 1
4
, τ2 = 1

4
, τ3 = 1

4
, Here τ1,τ2,τ3 be non negative reals so that

1 > τ1 +τ2 + τ3. Hence

d(hϖ, kϑ) ⪯i2 τ1d(Aϖ,Bϑ) + τ2d(Aϖ, hϖ) + τ3d(Bϑ, kϑ).

Case(b) if ϖ < ϑ, then

d(hϖ, kϑ) = i2max{ϖ
3
, ϑ
3
} = i2

ϑ
3
,

d(Aϖ,Bϑ) = i2max{ϖ,ϑ} = i2ϑ,

d(Aϖ, hϖ) = i2max{ϖ, ϖ3 } = i2ϖ,

d(Bϑ, kϑ) = i2ϑ.

Now, d(hϖ, kϑ) = i2
ϑ
3
⪯i2

1
4
[i2ϑ] +

1
4
[i2ϖ] + 1

4
[i2ϑ]

i.e., d(hϖ, kϑ) ⪯i2
1
4
d(Aϖ,Bϑ) + 1

4
d(Aϖ, hϖ) + 1

4
d(Bϑ, kϑ)

By choosing τ1 = 1
4
, τ2 = 1

4
, τ3 = 1

4
,

Here τ2,τ1,τ3 be non negative real numbers so that τ1 +τ2 + τ3 < 1. Hence

d(hϖ, kϑ) ⪯i2 τ1d(Aϖ,Bϑ) + τ2d(Aϖ, hϖ) + τ3d(Bϑ, kϑ).

Therefore 0 in X is the unique common fixed point of h, k, A and B.

6.2.3 Corollary: Suppose (X, d) is a complete bicomplex valued metric space

and h,k and A are self mappings on X satisfy

(i) d(hz, kw) ⪯i2 τ1d(Az,Aw)+ τ2d(Az, hz)+ τ3d(Aw, kw), for all z,w ∈ X, where

τ2,τ1 and τ3 are non negative reals such that 1 > τ1 + τ2 + τ3.

(ii) {h,A} and {k,A} are weakly compatible,

(iii) {h,A} and {k,A} satisfy CLRA property.

Then h,k and A have one and only one common fixed point.

Proof: We can prove this result easily by substituting B = A in the

Theorem 6.2.1.
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6.3 Common fixed point results for Six maps

using weakly compatibility

Now, we establish a common fixed point theorem for six self-mappings with the

help of weakly compatibility and inclusion relations and by defining the

generalized contraction. Moreover, we deduce a corollary from it.

6.3.1 Theorem: Suppose (X, d) is a complete bicomplex valued metric space and

that H,I,C,P,Q,R are the self mappings on X satisfy (i) H(X) ⊇ QR(X) and I(X)

⊇ CP(X) (ii) d(CPϖ,QRϑ) ⪯i2 τ1d(Hϖ, Iϑ) + τ2d(Hϖ,CPϖ) + τ3d(Iϑ,QRϑ)

+ τ4d(Hϖ,QRϑ) for all ϖ,ϑ ∈ X, where τ1,τ2,τ3 and τ4 be non negative real

numbers such that τ1 + τ2 + τ3 + 2τ4 < 1. (iii) Suppose (QR,I) and (CP,H) are

weakly compatible and (iv) (Q,R), (Q,I) (R,I),(C,P),(C,H) and (P,H) are pairs

of commuting maps. Then Q,R,C,P,I and H contains one and only one common

fixed point in X.

Proof: Let ϖ0 ∈ X. Since H(X) ⊇ QR(X) and I(X) ⊇ CP(X), we can find a

sequence {ϖ′
n} in X such that

CPϖ2l = Iϖ2l+1 = ϖ
′

2l and QRϖ2l+1 = Hϖ2l+2 = ϖ
′

2l+1 for l=0,1,2,....

Consider,

d(ϖ
′

2l, ϖ
′

2l+1) = d(CPϖ2l, QRϖ2l+1)

⪯i2 τ1d(Hϖ2l, Iϖ2l+1) + τ2d(Hϖ2l, CPϖ2l)

+ τ3d(Iϖ2l+1, QRϖ2l+1) + τ4d(Hϖ2l, QRϖ2l+1)

= τ1d(ϖ
′

2l−1, ϖ
′

2l) + τ2d(ϖ
′

2l−1, ϖ
′

2l) + τ3d(ϖ
′

2l, ϖ
′

2l+1)

+ τ4d(ϖ
′

2l−1, ϖ
′

2l+1)

= τ1d(ϖ
′

2l−1, ϖ
′

2l) + τ2d(ϖ
′

2l−1, ϖ
′

2l) + τ3d(ϖ
′

2l, ϖ
′

2l+1)

+ τ4[d(ϖ
′

2l−1, ϖ
′

2l) + d(ϖ
′

2l, ϖ
′

2l+1)]

i.e., (1− τ3 − τ4) d(ϖ
′

2l, ϖ
′

2l+1) ⪯i2 (τ1 + τ2 + τ4) d(ϖ
′

2l−1, ϖ
′

2l)

i.e., d(ϖ
′

2l, ϖ
′

2l+1) ⪯i2 ( τ1+τ2+τ4
1−τ3−τ4

) d(ϖ
′

2l−1, ϖ
′

2l)
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Similarly, we consider

d(ϖ
′

2l+1, ϖ
′

2l+2) = d(QRϖ2l+1, CPϖ2l+2)

= d(CPϖ2l+2, QRϖ2l+1)

⪯i2 τ1d(Hϖ2l+2, Iϖ2l+1) + τ2d(Hϖ2l+2, CPϖ2l+2)

+ τ3d(Iϖ2l+1, QRϖ2l+1) + τ4d(Hϖ2l+2, QRϖ2l+1)

= τ1d(ϖ
′

2l+1, ϖ
′

2l) + τ2d(ϖ
′

2l+1, ϖ
′

2l+2) + τ3d(ϖ
′

2l, ϖ
′

2l+1)

+ τ4d(ϖ
′

2l+1, ϖ
′

2l+1)

i.e., (1-τ2) d(ϖ
′

2l+1, ϖ
′

2l+2) ⪯i2 (τ1 + τ3)d(ϖ
′

2l, ϖ
′

2l+1)

i.e., d(ϖ
′

2l+1, ϖ
′

2l+2) ⪯i2 ( τ1+τ3
1−τ2

)d(ϖ
′

2l, ϖ
′

2l+1)

Let σ = max { τ1+τ2+τ4
1−τ3−τ4

, τ1+τ3
1−τ2

}.
Then σ <1, since τ1 + τ2 + τ3 + 2τ4 < 1.

Now, for m,l ∈ N and l < m, we consider

d(ϖ
′

l , ϖ
′

m) ⪯i2 d(ϖ
′

l , ϖ
′

l+1) + d(ϖ
′

l+1, ϖ
′

l+2) + .....+ d(ϖ
′

m−1, ϖ
′

m)

⪯i2 (σ
l + σl+1 + ......+ σm−1)d(ϖ

′

0, ϖ
′

1)

i.e., d(ϖ
′

l , ϖ
′
m) ⪯i2 ( σl

1−σ
)d(ϖ

′
0, ϖ

′
1)

Therefore we obtain

∥d(ϖ′

l , ϖ
′
m)∥ ⪯i2 (

σl

1−σ
)∥d(ϖ′

0, ϖ
′
1)∥

Since σ < 1, as n,m → ∞, we get ∥d(ϖ′

l , ϖ
′
m)∥ → 0

Hence {ϖ′
n} is a Cauchy sequence in X, which is complete. So ∃ a ȷ ∈ X so that

limn→∞CPϖ2n = limn→∞ Iϖ2n+1 = limn→∞QRϖ2n+1 = limn→∞ Pϖ2n+2 = ȷ.

Since QR(X) ⊆ H(X), ∃ z ∈ X such that Hz = ȷ.

Now we consider

d(CPz, ȷ) ⪯i2 d(CPz,QRϖ2n+1) + d(QRϖ2n+1, ȷ)

⪯i2 τ1d(Hz, Iϖ2n+1) + τ2d(Hz,CPz) + τ3d(Iϖ2n+1, QRϖ2n+1)

+ τ4d(Hz,QRϖ2n+1) + d(QRϖ2n+1, ȷ)

Letting n → ∞, we have

(CPz, ȷ) ⪯i2 τ1d(ȷ, ȷ) + τ2d(ȷ, CPz) + τ3d(ȷ, η) + τ4d(ȷ, , ȷ) + d(ȷ, ȷ)

Therefore we get

∥d(CPz, ȷ)∥ ≤ τ2∥d(CPz, ȷ)∥
which is a contradiction, since τ1 + τ2 + τ3 + 2τ4 < 1.

Therefore we get, ∥d(CPz, ȷ)∥ = 0.
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Hence CPz = Hz = ȷ.

Again since, CP(X) ⊆ I(X), there exists a w ∈ X with Iw = ȷ.

Now we consider,

d(ȷ, QRw) = d(CPz,QRw)

⪯i2 τ1d(Hz, Iw) + τ2d(Hz,CPz) + τ3d(Iw,QRw) + τ4d(Hz,QRw)

i.e., d(ȷ, QRw) ⪯i2 (τ3 + τ4)d(ȷ, QRw)

i.e., ∥d(ȷ, QRw)∥ ⪯i2 (τ3 + τ4)∥d(ȷ, QRw)∥
which is a contradiction, since τ1 + τ2 + τ3 + 2τ4 < 1.

Therefore we get, ∥d(ȷ, QRw)∥ = 0.

Hence QRw = ȷ = Iw.

Thus we get CPz = Hz = QRw = Iw = ȷ.

Since I and QR are weakly compatible, I(QR)w = QR(I)w implies Iȷ = QRȷ.

Since CP and H are weakly compatible, (CP)Hz = H(CP)z implies CPȷ = Hȷ.

Now we show that CPȷ = Hȷ = ȷ:

We now consider

d(CPȷ, ȷ) = d(CPȷ,QRw)

⪯i2 τ1d(Hȷ, Iw) + τ2d(Hȷ,CPȷ) + τ3d(Iw,QRw) + τ4d(Hȷ,QRw)

= τ1d(CPȷ, ȷ) + τ2d(Hȷ,Hȷ) + τ3d(Iw, Iw) + τ4d(CPȷ, ȷ)

i.e., d(CPȷ, ȷ) ⪯i2 (τ1 + τ4)d(CPȷ, ȷ)

i.e., ∥d(CPȷ, ȷ)∥ ≤ (τ1 + τ4)∥d(CPȷ, ȷ)∥
which is a contradiction, since τ1 + τ2 + τ3 + 2τ4 < 1.

Therefore, we get ∥d(CPȷ, ȷ)∥ = 0.

Hence CPȷ = ȷ = Hȷ.

Now, we show that QRȷ = ȷ :

We now consider

d(ȷ, QRȷ) = d(CPȷ,QRȷ)

⪯i2 τ1d(Hȷ, Iȷ) + τ2d(Hȷ,CPȷ) + τ3d(Iȷ,QRȷ) + τ4d(Hη,QRη)

= τ1d(ȷ, QRȷ) + τ2d(Hȷ,Hȷ) + τ3d(Iȷ, Iȷ) + τ4d(ȷ, QRȷ)

i.e., d(ȷ, QRȷ) ⪯i2 (τ1 + τ4)d(ȷ, QRȷ)

i.e., ∥d(ȷ, QRȷ)∥ ≤ (τ1 + τ4)∥d(ȷ, QRȷ)∥
which is a contradiction, since τ1 + τ2 + τ3 + 2τ4 < 1.
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Therefore, we get ∥d(ȷ, QRȷ)∥ = 0.

Hence, QRȷ = ȷ = Iȷ.

Thus, we get CPȷ = Hȷ = QRȷ = Iȷ = ȷ.

So, ȷ be a common fixed point of H,I,CP and QR.

From condition (iv) of the Theorem, we have

Qȷ = Q(QRȷ) = Q(RQȷ) = (QR)Qȷ and

Qȷ = Q(Hȷ) = H(Qȷ);

Rȷ = R(Hȷ) = HRȷ and

Rȷ = R(QRȷ) = (RQ)Rȷ = (QR)Rȷ.

Thus Qȷ and Rȷ are common fixed points of (QR,H).

Therefore, we get Qȷ = ȷ = Rȷ = Hȷ = QRȷ.

Similarly, we can easily prove, Cȷ = ȷ = Pȷ = Iȷ = CPȷ.

Thus, ȷ is a common fixed point of H,I,C,P,Q and R.

Now we prove ȷ is unique. Suppose γ is a common fixed point of H,I,C,P,Q and

R other than ȷ.

Now we consider,

d(ȷ, γ) = d(CPȷ,QRγ)

⪯i2 τ1d(Hȷ, Iγ) + τ2d(Hȷ,CPη) + τ3d(Iγ,QRγ) + τ4d(Hȷ,QRγ)

i.e., d(ȷ, γ) ⪯i2 (τ1 + τ4)d(ȷ, γ)

i.e.,∥d(ȷ, γ)∥ ⪯i2 (τ1 + τ4)∥d(ȷ, γ)∥
which is a contradiction, since τ1 + τ2 + τ3 + 2τ4 < 1.

Therefore, we get ∥d(ȷ, γ)∥ = 0.

Hence, we get ȷ = γ.

Thus ȷ is the one and only one common fixed point of H,I,C,P,Q and R.

6.3.2 Corollary: Suppose (X, d) is a complete bicomplex valued metric space

and that H,C,P,Q,R are the self mappings on X satisfy (i) H(X) ⊇ QR(X)

and H(X) ⊇ CP (X) (ii) d(CPϖ,QRϑ) ⪯i2 τ1d(Hϖ,Hϑ) + τ2d(Hϖ,CPϖ)

+ τ3d(Hϑ,QRϑ) + τ4d(Hϖ,QRϑ) for all ϖ,ϑ ∈ X, where τ1,τ2,τ3 and τ4 be

non negative real numbers such that τ1+τ2+τ3+2τ4 < 1. (iii) Suppose that (QR,H)

and (CP,H) are weakly compatible and (iv) (Q,R), (Q,H) (R,H),(C,P),(C,H) and

(P,H) are pairs of commuting maps. Then Q,R,C,P and H have one and only one

common fixed point in X.
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Proof: This result can be proved easily by substituting I = H in the above

theorem.

6.4 Common coupled fixed point result in

bicomplex valued metric space

Through this section, we prove a common coupled fixed point result for two self

mappings in bicomplex valued metric space.

6.4.1 Theorem: Suppose (X, d) is a complete bicomplex valued metric space

and h,k : X × X → X are two functions satisfy

d(h(ϖ, ȷ), k(ρ, σ)) ⪯i2 τ1
d(ϖ,ρ)+d(ȷ,σ)

2
+ τ2

d(ϖ,h(ϖ,ȷ))+d(ρ,ϖ)
2

+ τ3
d(ϖ,h(ϖ,ȷ))+d(ρ,k(ρ,σ))

2

where ϖ, ȷ, ρ, σ ∈X and τ1, τ2 and τ3 are non negative integers such that

1 > τ1 + τ2 + τ3. Then h and k contains one and only one common coupled

fixed point in X×X.

Proof: Consider two arbitrary elements ϖ0, ȷ0 ∈ X. We define two sequences

{ϖn}, {ȷn} such that ϖ2l+1 = h(ϖ2l, ȷ2l), ϖ2l+2 = k(ϖ2l+1, ȷ2l+1),

ȷ2l+1 = h(ȷ2l, ϖ2l), ȷ2l+2 = k(ȷ2l+1, ϖ2l+1), for l=0,1,2...

Now we consider,

d(ϖ2l+1, ϖ2l+2) = d(h(ϖ2l, ȷ2l), k(ϖ2l+1, ȷ2l+1))

⪯i2 τ1
d(ϖ2l, ϖ2l+1) + d(ȷ2l, ȷ2l+1)

2
+ τ2

d(ϖ2l, h(ϖ2l, ȷ2l)) + d(ϖ2l+1, ϖ2l)

2

+ τ3
d(ϖ2l, h(ϖ2l, ȷ2l)) + d(ϖ2l+1, k(ϖ2l+1, ȷ2l+1))

2

= τ1
d(ϖ2l, ϖ2l+1) + d(ȷ2l, ȷ2l+1)

2
+ τ2

d(ϖ2l, ϖ2l+1) + d(ϖ2l+1, ϖ2l)

2

+ τ3
d(ϖ2l, ϖ2l+1) + d(ϖ2l+1, ϖ2l+2)

2

= (
τ1 + 2τ2 + τ3

2
)d(ϖ2l, ϖ2l+1) + (

τ1
2
)d(ȷ2l, ȷ2l+1)

+ (
τ3
2
)d(ϖ2l+1, ϖ2l+2)
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i.e., (2−τ3)d(ϖ2l+1, ϖ2l+2)⪯i2 (τ1+2τ2+τ3)d(ϖ2l, ϖ2l+1) + (τ1) d(ȷ2l, ȷ2l+1) (6.4.1)

Again, we consider

d(ȷ2l+1, ȷ2l+2) = d(h(ȷ2l, ϖ2l), k(ȷ2l+1, ϖ2l+1))

⪯i2 τ1
d(ȷ

′

2l, ȷ2l+1) + d(ϖ2l, ϖ2l+1)

2
+ τ2

d(ȷ2l, h(ȷ2l, ϖ2l)) + d(ȷ2l+1, ȷ2l)

2

+ τ3
d(ȷ2l, h(ȷ2l, ϖ2l) + d(ȷ2l+1, k(ȷ2l+1, ϖ2l+1))

2

= τ1
d(ȷ2l, ȷ2l+1) + d(ϖ2l, ϖ2l+1)

2
+ τ2

d(ȷ2l, ȷ2l+1) + d(ȷ2l+1, ȷ2l)

2

+ τ3
d(ȷ2l, ȷ2l+1) + d(ȷ2l+1, ȷ2l+2)

2

= (
τ1 + 2τ2 + τ3

2
)d(ȷ2l, ȷ2l+1) + (

τ1
2
)d(ϖ2l, ϖ2l+1) + (

τ3
2
)d(ȷ2l+1, ȷ2l+2)

i.e.,

(2−τ3)d(ȷ2l+1, ȷ2l+2) ⪯i2 (τ1+2τ2+τ3)d(ȷ2l, ȷ2l+1) + (τ1) d(ϖ2l, ϖ2l+1) (6.4.2)

By adding the equations (6.4.1) and (6.4.2) we get

d(ϖ2l+1, ϖ2l+2) +d(ȷ2l+1, ȷ2l+2) ⪯i2 η[d(ϖ2l, ϖ2l+1) +d(ȷ2l, ȷ2l+1)]

where η = 2τ1+2τ2+τ3
2−τ3

and 0 ≤ η < 1, since 1 > τ1 + τ2 + τ3.

Similarly, we can easily show that

d(ϖ2l+2, ϖ2l+3) +d(ȷ2l+2, ȷ2l+3) ⪯i2 η[d(ϖ2l+1, ϖ2l+2) +d(ȷ2l+1, ȷ2l+2)]

Then, for any l ∈ N, we get

d(ϖl+2, ϖl+1) + d(ȷl+2, ȷl+1) ⪯i2 η[d(ϖl+1, ϖl) + d(ȷl+1, ȷl)]

⪯i2 η
2[d(ϖl, ϖl−1) + d(ȷl, ȷl−1)]

.........

⪯i2 η
l+1[d(ϖ1, ϖ0) + d(ȷ1, ȷ0)]

Now, we consider m, l ∈ N and m > l , we get

d(ϖm, ϖl) + d(ȷm, ȷl) ⪯i2 [d(ϖl, ϖl+1) + d(ȷl, ȷl+2)] + [d(ϖl+1, ϖm) + d(ȷl+1, ȷm)]

⪯i2 [d(ϖl, ϖl+1) + d(ȷl, ȷl+1)] + [d(ϖl+1, ϖl+2)

+ d(ȷl+1, ȷl+2)] + ......+ [d(ϖm−1, ϖm) + d(ȷm−1, ȷm)]

⪯i2 [η
l + ηl+1 + ηl+2 + ....+ ηm−1][d(ϖ1, ϖ0) + d(ȷ1, ȷ0)]

⪯i2 (
ηl

1− η
)[d(ϖ1, ϖ0) + d(ȷ1, ȷ0)]

Since 0 ≤ η <1, Then d(ϖm, ϖl) → 0 & d(ȷm, ȷl) → 0, as l,m→ ∞.

Hence {ϖn} and {ȷn} are two Cauchy sequences in X and so there exist ϖ, ȷ ∈ X
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such that (ϖn) → ϖ and (ȷn) → ȷ as n→ ∞.

Now we consider

d(h(ϖ, ȷ), ϖ) ⪯i2 d(h(ϖ, ȷ), ϖ2l+2) + d(ϖ2l+2, ϖ)

= d(h(ϖ, ȷ), k(ϖ2l+1, s2l+1) + d(ϖ2l+2, ϖ)

⪯i2 τ1
d(ϖ,ϖ2l+1) + d(ȷ, ȷ2l+1)

2
+ τ2

d(ϖ, h(ϖ, ȷ)) + d(ϖ2l+1, ϖ)

2

+ τ3
d(ϖ, h(ϖ, ȷ)) + d(ϖ2l+1, k(ϖ2l+1, ȷ2l+1))

2
+ d(ϖ2l+2, ϖ)

= τ1
d(ϖ,ϖ2l+1) + d(ȷ, ȷ2l+1)

2
+ τ2

d(ϖ, h(ϖ, ȷ)) + d(ϖ2l+1, ϖ)

2

+ τ3
d(ϖ, h(ϖ, ȷ)) + d(ϖ2l+1, ϖ2l+2)

2
+ d(ϖ2l+2, ϖ)

Letting the limit as l → ∞, then we get

∥d(h(ϖ, ȷ), ϖ)∥ ≤ (
τ2 + τ3

2
)∥d(h(ϖ, ȷ), ϖ)∥

which is a contradiction, since τ1 + τ2 + τ3 < 1.

Therefore, we get ∥d(h(ϖ, ȷ), ϖ)∥ = 0.

Hence, h(ϖ, ȷ) = ϖ.

Similarly it can easily be shown that h(ȷ,ϖ) = ȷ.

Now we consider,

d(ϖ, k(ϖ, ȷ)) = d(h(ϖ, ȷ), k(ϖ, ȷ))

⪯i2 τ1
d(ϖ,ϖ) + d(ȷ, ȷ)

2
+ τ2

d(ϖ, h(ϖ, ȷ)) + d(ϖ,ϖ)

2

+ τ3
d(ϖ, h(ϖ, ȷ)) + d(ϖ, k(ϖ, ȷ))

2

i.e., d(ϖ, k(ϖ, ȷ)) ⪯i2
τ3
2
d(ϖ, k(ϖ, ȷ))

i.e., ∥d(ϖ, k(ϖ, ȷ))∥ ≤ τ3
2
∥d(ϖ, k(ϖ, ȷ))∥

i.e., (1− τ3
2
) ∥d(ϖ, k(ϖ, ȷ))∥ ≤ 0, since 1 > τ1 + τ2 + τ3.

Therefore, we get ∥d(ϖ, k(ϖ, ȷ))∥ = 0. Hence k(ϖ, ȷ) = ϖ.

Similarly, we can easily show that k(ȷ,ϖ) = ϖ.

Thus, (ϖ, ȷ) is a common coupled fixed point of h and k.

Now we prove (ϖ, ȷ) is unique.

Let (ℓ, υ) is any other common coupled fixed point of h and k.

Then h(ℓ, υ) = k(ℓ, υ) = ℓ and h(υ, ℓ) = k(υ, ℓ) = υ.
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Now we consider,

d(ϖ, ℓ) = d(h(ϖ, ȷ), k(ℓ, υ))

⪯i2 τ1
d(ϖ, ℓ) + d(ȷ, υ)

2
+ τ2

d(ϖ, h(ϖ, ȷ)) + d(ℓ,ϖ)

2

+ τ3
d(ϖ, h(ϖ, ȷ)) + d(ℓ, k(ℓ, υ))

2

= τ1
d(ϖ, ℓ) + d(ȷ, υ)

2
+ τ2

d(ϖ,ϖ) + d(ℓ,ϖ)

2
+ τ3

d(ϖ,ϖ) + d(ℓ, ℓ)

2

= (
τ1 + τ2

2
)d(ϖ, ℓ) +

τ1
2
d(ȷ, υ) (6.4.3)

Similarly, we can show that

d(ȷ, υ) ⪯i2 (
τ1 + τ2

2
)d(ȷ, υ) +

τ1
2
d(ϖ, ℓ) (6.4.4)

By adding the equations (6.4.3) and (6.4.4), we get

d(ϖ, ℓ) + d(ȷ, υ) ⪯i2 (2τ1+τ2
2

)[d(ϖ, ℓ) + d(ȷ, υ)]

i.e., (1− 2τ1+τ2
2

)[d(ϖ, ℓ) + d(ȷ, υ)] ⪯i2 0.

Since 1 > τ1 + τ2 + τ3,

we get ∥d(ϖ, ℓ) + d(ȷ, υ)∥ ≤ 0.

So d(ϖ, ℓ) + d(ȷ, υ) = 0.

Hence, ϖ = ℓ and ȷ = υ. i.e., (ϖ, ȷ) = (ℓ, υ).

Hence (ϖ, ȷ) is one and only one common coupled fixed point of h and k.
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fonctions en séries dont divers termes sont assujettis à satisfaire a une même
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ordinaires. Math. Ann., 37(2), 182–228, (1890).
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Abstract. Through this article, we establish an invariant point theorem by defining generalized Zs -

contractions in relation to the simulation function in S-metric space. In this article, we generalized

the results of Nihal Tas, Nihal Yilmaz Ozgur and N.Mlaiki. In addition to that, we bestow an example

which supports our results.

1. Introduction

Fixed point is also known as an invariant point. Banach principle of contraction [2] on metric space

plays very important role in the field of invariant point theory and non linear analysis. In 1922, Stefan

Banach initiated the concept of contraction and established well known Banach contraction theorem.

In the year 2006, B Sims and Mustafa [9], established theory on G-metric spaces, that is an extension of

metric spaces and established some properties. Later, A.Aliouche, S.Sedghi and N.Shobe [13] initiated

S-metric spaces, it is a generalization of G-metric spaces in the year 2012. In 2014, S.Radojevic,

N.V.Dung and N.T.Hieu [4] proved by examples that S-metric space is not a generalization of G-

metric space and vice versa. Invariant points of various contractive maps on S-metric spaces were

studied in [ [1], [3], [6]- [8], [11]]. In 2015, F.Khajasteh, Satish Shukla and S.Radenovic [5] introduced

simulation function and the concept of Z-contration in relation to simulation function and proved

an invariant point theorem which generalizes the Banach Contraction principle. Very recently, Murat

Olgun, O.Bicer and T.Alyildiz [10] defined generalized Z-contraction in relation to the simulation

function and proved an invariant point theorem.
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Some Fixed Point Outcomes in Sb-Metric Spaces using
(ϕ, ψ)-Generalized Weakly Contractive Maps in

Sb-Metric Spaces
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Abstract

In this result, we define (ψ, ϕ) -generalized weakly contraction map in Sb-
metric space. In the year 2017, B.K.Leta and G.V.R.Babu[3] defined (α,ψ, ϕ)-
generalized weakly contractive maps in S-metric spaces and established the
existence and uniqueness of fixed point theorem for such maps. By the motivation
of B.K.Leta and G.V.R.Babu[3] results in S-metric spaces, we introduced the
(ψ, ϕ) - generalized weakly contractive map in Sb-metric spaces and prove a
existence and uniqueness of fixed point theorem. We also give an example to
support of our result.

Keywords: Fixed point, S-metric space, Sb-metric space, (ψ, ϕ)- generalized weakly
contracition map.
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1. INTRODUCTION

During 1922, Stefan Banach conceived the concept of contraction and established
well known Banach contraction theorem. Banach Principle of contraction[9] on
metric spaces is the paramount importance cause in the field of fixed points and non
linear analysis. Literature’s are brought out new outcomes that are related to prove
the generalization of metric space and to acquire a refinement about the contractive
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Abstract 

In this paper, we establish some fixed point and common fixed-point theorems in bS -metric 

spaces using implicit relation. The results presented in this paper extend and generalize several 

results from the existing literature. 

1. Introduction 

In 1906, Maurice Fréchet [4] introduced the concept of metric spaces. 

Later, in the year 1922, Stefan Banach [2] proved a very famous theorem 

called “Banach Fixed Point Theorem”. In 2006, Z. Mustafa and B. Sims [5] 

introduced G-metric spaces. In 2012, Sedghi, Shobe and Aliouche [11] 

introduced S-metric spaces and they claimed that S-metric spaces are the 

generalization of G-metric spaces. But, later Dung, Hieu and Radojevic [3] 

have given examples that S-metric spaces are not the generalization of G-

metric spaces or vice versa. Therefore, the collection of G-metric spaces and 

S-metric spaces are different. In 1989, I. A. Bakhtin [1] introduced b-metric 

spaces as a generalization of metric spaces. In 2016, N. Souayah, N. Mlaiki 

[12] introduced bS -metric spaces as the generalizations of b-metric spaces 

and S-metric spaces. But, very recently Tas and Ozur [6] studied some 

relations between bS -metric spaces and some other metric spaces. S. Sedghi 

and N. V. Dung [9] introduced an implicit relation to investigate some fixed-
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Abstract Fixed points are also called as invariant points.
Invariant point theorems are very essential tools in solving
problems arising in different branches of mathematical
analysis. In the present paper, we establish three unique
common invariant point theorems using two self-mappings,
four self-mappings and six self-mappings in the bicomplex
valued metric space. In the first theorem, we generate a com-
mon invariant point theorem for four self-mappings by using
weaker conditions such as weakly compatible, generalized
contraction and (CLRAB) property. Then, in the second
theorem, we generate a common invariant point theorem for
six self-mappings by using inclusion relation, generalized
contraction, weakly compatible and commuting maps. Further,
in the third theorem, we generate a common coupled invariant
point for two self mappings using different contractions in
the bicomplex valued metric space. The above results are
the extention and generalization of the results of [11] in the
Bicomplex metric space. Moreover, we provide an example
which supports the results.

Keywords Bicomplex Valued Metric Space, Common
Fixed Point, Coupled Fixed Point, CLR Property, Weakly
Compatible Mappings

1 Introduction
The concepts of bicomplex numbers and tricomplex num-

bers were introduced in the year 1892 by Segre[1]. Complex
valued metric spaces are introduced by Azam et al.[2], in the
year 2011 and some results were studied for such spaces. Very
recently, the bicomplex valued metric space was introduced by

Cho et al.[5] and some fixed point results were obtained. In the
year 2019, Jebril, Datta, Sarkar and Biswas [6] derived some
fixed point outcomes using rational contractions in bicomplex
valued metric space.

Imdad et al.[8] introduced a new notion, called CLR-
property for self maps in 2012. Afterwards, by using it several
mathematicians obtained some fixed point results ([3],[4],[9]
and [10]). The main purpose of this work is to prove some
invariant point outcomes using various contractions for four
self mappings, six self mappings and coupled invariant point
theorems using weakly compatibility, CLRAB property and
commuting maps in bicomplex valued metric spaces.

2 Preliminaries
We denote C0 = R(Real numbers), C1 = C(Complex num-

bers) and C2 = Set of all bicomplex numbers.
Let ϖ,ϑ ∈ C1, then we define a partial order ⪯ on C1 as:
ϖ ⪯ ϑ ⇐⇒ Re(ϖ) ≤ Re(ϑ) and Im(ϖ) ≤ Im(ϑ).
Also ϖ ≺ ϑ if Re(ϖ) < Re(ϑ) and Im(ϖ) < Im(ϑ).
Segre[1] defined the bicomplex number as:

ζ =b1 + b2i1 + b3i2 + b4i1i2,

where b1, b2, b3, b4 ∈ C0, and i1, i2 are the independent units
such that i21 = i22 = −1 and i1i2 = i2i1,
we defined C2 as:

C2 = {ζ : ζ = b1 + b2i1 + b3i2 + b4i1i2, b1, b2, b3, b4 ∈ C0},

i.e.,

C2 = {ζ : ζ = ϖ + i2ϑ,ϖ, ϑ ∈ C1}
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